橢圓
x2
9
+
y2
5
=1的兩個焦點為F1、F2,點P是橢圓上任意一點(非左右頂點),在△PF1F2的周長為( 。
A、6B、8C、10D、12
考點:橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:求出橢圓的幾何量a、b、c,利用橢圓的定義,求解即可.
解答: 解:橢圓
x2
9
+
y2
5
=1,可知a=3,b2=5,所以c=
9-5
=2,
由橢圓的定義可知:△PF1F2的周長為:|PF1|+|PF2|+|F1F2|=2a+2c=10.
故選:C.
點評:本題考查橢圓的簡單性質(zhì),橢圓方程的應用,考查計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖(a),已知,拋物線y=-ax2+2ax+m與x軸交于A(-1,0),B兩點,與y軸負半軸交于C點,且OB=OC.
(1)求拋物線的解析式.
(2)點M在第四象限的拋物線圖象上,且S△ACM=
5
4
S△BAM,求M點的坐標.
(3)如圖(b),D為y軸正半軸上一點,連DB,DE⊥DB交拋物線于如圖所示的E點,且DE=2DB,求E點的坐標

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A={x|y=
36-x2
},B={β|2kπ-
π
3
≤β≤2kπ+
π
3
,k∈Z},求A∩B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正三棱錐S-ABC內(nèi)接于半徑為4的球,過側(cè)棱SA及球心O的平面截三棱錐及球面所得截面如下,則此三棱錐的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=|x-1|+|x+1|.
(1)解不等式f(x)≥3;
(2)若f(x)≥a-1的解集為R,求a取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
1
2
(a+1)x2+ax.
(1)求f(x)的單調(diào)區(qū)間.
(2)方程f(x)=0僅有一個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)在公差為d的等差數(shù)列{an}中,已知a1=10,且a1,2a2+2,5a3成等比數(shù)列.求d,an;     
(2)已知等差數(shù)列{bn}的前n項和為Sn,b5=5,S5=15,則數(shù)列{
1
bnbn+1
}100項和為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設向量
a
=(a,b,c),向量
b
=(x,y,z),|
a
|=5,|
b
|=6,
a
b
=30,則
a+b+c
x+y+z
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由下面四個圖形中的點數(shù)分別給出了四個數(shù)列的前四項,將每個圖形的層數(shù)增加可得到這四個數(shù)列的后繼項.按圖中多邊形的邊數(shù)依次稱這些數(shù)列為“三角形數(shù)列”、“四邊形數(shù)列”…,將構(gòu)圖邊數(shù)增加到n可得到“n邊形數(shù)列”,記它的第r項為P(n,r),

(1)求使得P(3,r)>36的最小r的取值;
(2)問3725是否為“五邊形數(shù)列”中的項,若是,為第幾項;若不是,說明理由;
(3)試推導P(n,r)關(guān)于n、r的解析式.

查看答案和解析>>

同步練習冊答案