【題目】已知函數(shù)f(x)= 是奇函數(shù)
(1)求a的值;
(2)判斷函數(shù)的單調(diào)性,并給予證明.

【答案】
(1)解:∵f(x)是奇函數(shù),

∴f(﹣x)=﹣f(x)

,

整理得:(2x﹣1)(a﹣2)=0對(duì)任意x∈R都成立,

∴a﹣2=0,

即a=2


(2)解:此時(shí) ,

f(x)在x∈R是增函數(shù),理由如下:

證法一:任取x1,x2∈R,且x1<x2

∵x1<x2,且函數(shù)y=2x是增函數(shù),

<0, >0

∴f(x1)﹣f(x2)<0,

所以函數(shù)f(x)在R是增函數(shù).

證法二:∵

,

∵f′(x)>0恒成立,

所以函數(shù)f(x)在R是增函數(shù)


【解析】(1)由函數(shù)f(x)= 是奇函數(shù),f(﹣x)=﹣f(x)恒成立,可得a的值;(2)f(x)在x∈R是增函數(shù),
證法一:任取x1 , x2∈R,且x1<x2 , 作差判斷出f(x1)﹣f(x2)<0,結(jié)合單調(diào)性的定義,可得:函數(shù)f(x)在R是增函數(shù);
證法二:求導(dǎo),根據(jù)f′(x)>0恒成立,可得:函數(shù)f(x)在R是增函數(shù).
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)單調(diào)性的判斷方法(單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大小;③作差比較或作商比較),還要掌握函數(shù)的奇偶性(偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某醫(yī)藥研究所開(kāi)發(fā)一種新藥,如果成年人按規(guī)定的劑量服用,據(jù)監(jiān)測(cè),服藥后每毫升血液中的含藥量y(微克)與時(shí)間t(小時(shí))之間近似滿足如圖所示的曲線.據(jù)進(jìn)一步測(cè)定,每毫升血液中含藥量不少于0.25微克時(shí),治療疾病有效,則服藥一次治療該疾病有效的時(shí)間為(

A.4小時(shí)
B.
C.
D.5小時(shí)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),曲線的普通方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

(I)求直線的極坐標(biāo)方程與曲線的參數(shù)方程;

(II)設(shè)點(diǎn)D在曲線上,且曲線在點(diǎn)D處的切線與直線垂直,試確定點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=

(Ⅰ)求函數(shù)f(x)的定義域;

(Ⅱ)判定f(x)的奇偶性并證明;

(Ⅲ)用函數(shù)單調(diào)性定義證明:f(x)在(1,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)g(x)=3x , h(x)=9x
(1)解方程:h(x)﹣8g(x)﹣h(1)=0;
(2)令p(x)= ,求值:p( )+p( )+…+p( )+p( ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,分別根據(jù)下列條件解三角形,其中有兩個(gè)解的是(
A.a=7,b=14,A=30°
B.a=20,b=26,A=150°
C.a=30,b=40,A=30°
D.a=72,b=60,A=135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】原命題:“,為兩個(gè)實(shí)數(shù),若,則,中至少有一個(gè)不小于1,下列說(shuō)法錯(cuò)誤的是

A.逆命題為:若中至少有一個(gè)不小于1,為假命題

B.否命題為:若,都小于1 ,為假命題

C.逆否命題為:若都小于1 ,為真命題

D.”是“,中至少有一個(gè)不小于1”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于任意實(shí)數(shù)x,不等式ax2+2ax﹣(a+2)<0恒成立,則實(shí)數(shù)a的取值范圍是(
A.﹣1≤a≤0
B.﹣1≤a<0
C.﹣1<a≤0
D.﹣1<a<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新生兒Apgar評(píng)分,即阿氏評(píng)分是對(duì)新生兒出生后總體狀況的一個(gè)評(píng)估,主要從呼吸、心率、反射、膚色、肌張力這幾個(gè)方面評(píng)分,滿10分者為正常新生兒,評(píng)分7分以下的新生兒考慮患有輕度窒息,評(píng)分在4分以下考慮患有重度窒息,大部分新生兒的評(píng)分多在7-10分之間,某市級(jí)醫(yī)院婦產(chǎn)科對(duì)1月份出生的新生兒隨機(jī)抽取了16名,以下表格記錄了他們的評(píng)分情況.

(1)現(xiàn)從16名新生兒中隨機(jī)抽取3名,求至多有1名評(píng)分不低于9分的概率;

(2)以這16名新生兒數(shù)據(jù)來(lái)估計(jì)本年度的總體數(shù)據(jù),若從本市本年度新生兒任選3名,記表示抽到評(píng)分不低于9分的新生兒數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案