分析 設(shè)A(x1,y1),B(x2,y2),則$\frac{{x}_{1}^{2}}{4}$+$\frac{{y}_{1}^{2}}{2}$=1,$\frac{{x}_{2}^{2}}{4}+\frac{{y}_{2}^{2}}{2}$=1.相減可得:$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{4}$+$\frac{({y}_{1}+{y}_{2})({y}_{1}-{y}_{2})}{2}$=0,再利用中點坐標公式、斜率計算公式即可得出.
解答 解:設(shè)A(x1,y1),B(x2,y2),則$\frac{{x}_{1}^{2}}{4}$+$\frac{{y}_{1}^{2}}{2}$=1,$\frac{{x}_{2}^{2}}{4}+\frac{{y}_{2}^{2}}{2}$=1.
相減可得:$\frac{({x}_{1}+{x}_{2})({x}_{1}-{x}_{2})}{4}$+$\frac{({y}_{1}+{y}_{2})({y}_{1}-{y}_{2})}{2}$=0,
∵x1+x2=2,y1+y2=-1,$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=k,代入上式可得:$\frac{2}{4}$-$\frac{k}{2}$=0,解得k=1.
∴直線l的方程為:y+$\frac{1}{2}$=x-1,化為:x-2y-3=0.
故答案為:x-2y-3=0.
點評 本題考查了橢圓的標準方程及其性質(zhì)、中點坐標公式、斜率計算公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | $-\frac{1}{3}$ | C. | -3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 135° | B. | 90° | C. | 45°或135° | D. | 30° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$f($\frac{π}{4}$)>$\sqrt{2}$f($\frac{π}{3}$) | B. | $\sqrt{2}$f($\frac{π}{6}$)>f($\frac{π}{4}$) | C. | f(1)<2f($\frac{π}{6}$)sin1 | D. | $\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{{2\sqrt{2}}}{3}$ | B. | $\frac{{2\sqrt{2}}}{3}$ | C. | $-\frac{1}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com