【題目】已知( +3x2)n的展開式中,各項(xiàng)系數(shù)的和與其各項(xiàng)二項(xiàng)式系數(shù)的和之比為32.
(1)求n;
(2)求展開式中二項(xiàng)式系數(shù)最大的項(xiàng).
【答案】
(1)解:令x=1,則( +3x2)n展開式的各項(xiàng)系數(shù)和為4n,又( +3x2)n展開式的各項(xiàng)二項(xiàng)式系數(shù)和為2n,
所以 =32,即2n=32,解得n=5
(2)解:由(1)可知:n=5,所以( +3x2)5展開式的中間兩項(xiàng)二項(xiàng)式系數(shù)最大,即
T3=C52 (3x2)2=90x6,
T4=C53( )2(3x2)3=270x
【解析】(1)令二項(xiàng)式中的x=1得到展開式中的各項(xiàng)系數(shù)的和,根據(jù)二項(xiàng)式系數(shù)和公式得到各項(xiàng)二項(xiàng)式系數(shù)的和,據(jù)已知列出方程求出n的值.(2)將n的值代入二項(xiàng)式,根據(jù)中間項(xiàng)的二項(xiàng)式系數(shù)最大,判斷出二項(xiàng)式系數(shù)最大的項(xiàng),利用二項(xiàng)展開式的通項(xiàng)公式求出該項(xiàng).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)= +lg(x﹣1)的定義域是( )
A.(1,+∞)
B.(﹣∞,2)
C.(2,+∞)
D.(1,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù).
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(1)請畫出上表數(shù)據(jù)的散點(diǎn)圖.
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程.
(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(2)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤.
(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+alnx(a為實(shí)常數(shù))
(1)若a=﹣2,求證:函數(shù)f(x)在(1,+∞)上是增函數(shù);
(2)求函數(shù)f(x)在[1,e]上的最小值及相應(yīng)的x值;
(3)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=aln(x﹣1),g(x)=x2+bx,F(xiàn)(x)=f(x+1)﹣g(x),其中a,b∈R.
(1)若y=f(x)與y=g(x)的圖象在交點(diǎn)(2,k)處的切線互相垂直,求a,b的值;
(2)若x=2是函數(shù)F(x)的一個(gè)極值點(diǎn),x0和1是F(x)的兩個(gè)零點(diǎn),且x0∈(n,n+1)n∈N,求n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】集合A是由滿足以下性質(zhì)的函數(shù)f(x)組成的:對于任意x≥0,f(x) ∈[-2,4]且f(x)在[0,+∞)上是增函數(shù).
(Ⅰ)試判斷與(x≥0)是否屬于集合A,并說明理由;
(Ⅱ)對于(Ⅰ)中你認(rèn)為屬于集合A的函數(shù)f(x),證明:對于任意的x≥0,都有f(x)+f(x+2)<2f(x+1).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,E、F分別是BB1 , CD的中點(diǎn),求證:平面ADE⊥平面A1FD1 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過橢圓 =1的右焦點(diǎn)F作斜率k=﹣1的直線交橢圓于A,B兩點(diǎn),且 共線.
(1)求橢圓的離心率;
(2)當(dāng)三角形AOB的面積S△AOB= 時(shí),求橢圓的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com