設(shè)集合,函數(shù).

(1)若的最小值為1;求實(shí)數(shù)的值

(2)若,且,求的取值范圍.

 

【答案】

(1); (2)

【解析】

試題分析:(1)   令,

最小為  ∴

(2)當(dāng) 當(dāng) 

    ∴.

    ∴    ∴

  ∴     ∴

考點(diǎn):分段函數(shù)的概念,指數(shù)函數(shù)的性質(zhì),二次函數(shù)的性質(zhì),集合的概念。

點(diǎn)評(píng):中檔題,利用換元思想,將問(wèn)題轉(zhuǎn)化成而產(chǎn)生的圖象和性質(zhì)問(wèn)題,比較典型。確定元素與集合的關(guān)系,從確定函數(shù)的值域入手,根據(jù)變量的范圍,明確集合與元素的關(guān)系。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合函數(shù)y=ln(-x2-2x+8)的定義域?yàn)锳,集合B為函數(shù)y=x+
1x+1
(x>-1)的值域,集合C為不等式(ax+1)(x+4)≤0的解集.
(1)求A∩B;
(2)若C⊆?RA,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U={0,1,2,3,4},集合函數(shù)A={1,2},則CUA等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省成都市高三9月月考理科數(shù)學(xué)試題(解析版) 題型:解答題

(本小題滿(mǎn)分12分)

已知關(guān)于x的二次函數(shù).

(I)設(shè)集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個(gè)數(shù)作為a和b,求函數(shù)在區(qū)間上是增函數(shù)的概率;

(II)設(shè)點(diǎn)(a,b)是區(qū)域內(nèi)的一點(diǎn),求函數(shù)在區(qū)間上是增函數(shù)的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆福建省泉州市高三上學(xué)期期中理科數(shù)學(xué)試卷 題型:解答題

設(shè)集合

(1)若,求的取值范圍;

(2)求函數(shù)的最值

 

查看答案和解析>>

同步練習(xí)冊(cè)答案