如圖,已知直線l:y=kx-2與拋物線C:x2=-2py(p>0)交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),(-4,-12).

(Ⅰ)求直線l和拋物線C的方程;

(Ⅱ)拋物線上一動(dòng)點(diǎn)PAB運(yùn)動(dòng)時(shí),求△ABP面積最大值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直線l:y=kx-2與拋物線C:x2=-2py(p>0)交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),
OA
+
OB
=(-4,-12)

(Ⅰ)求直線l和拋物線C的方程;
(Ⅱ)拋物線上一動(dòng)點(diǎn)P從A到B運(yùn)動(dòng)時(shí),求△ABP面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)a>0,如圖,已知直線l:y=ax及曲線C:y=x2,C上的點(diǎn)Q1的橫坐標(biāo)為a1(0<a1<a).從C上的點(diǎn)Qn(n≥1)作直線平行于x軸,交直線l于點(diǎn)Pn+1,再從點(diǎn)Pn+1作直線平行于y軸,交曲線C于點(diǎn)Qn+1.Qn(n=1,2,3,…)的橫坐標(biāo)構(gòu)成數(shù)列{an}.
(Ⅰ)試求an+1與an的關(guān)系,并求{an}的通項(xiàng)公式;
(Ⅱ)當(dāng)a=1,a1
1
2
時(shí),證明
n
k=1
(ak-ak+1)ak+2
1
32
;
(Ⅲ)當(dāng)a=1時(shí),證明
n
k-1
(ak-ak+1)ak+2
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直線L:y=kx-1與拋物線C:y=x2,相交于兩點(diǎn)A、B,設(shè)點(diǎn)M(0,2),△MAB的面積為S.
(1)若直線L上與M連線距離為1的點(diǎn)至多存在一個(gè),求S的范圍.
(2)若直線L上與M連線的距離為1的點(diǎn)有兩個(gè),分別記為C、D,且滿足S≥λ|CD|恒成立,求正數(shù)λ的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣州三模)如圖,已知直線l:y=4x及曲線C:y=x2,C上的點(diǎn)Q1的橫坐標(biāo)為a1(0<a1<4).從曲線C上的點(diǎn)Qn(n≥1)作直線平行于x軸,交直線l于點(diǎn)Pn+1,再從點(diǎn)Pn+1作直線平行于y軸,交曲線C于點(diǎn)Qn+1.Qn(n=1,2,3,…)的橫坐標(biāo)構(gòu)成數(shù)列{an}.
(1)試求an+1與an的關(guān)系; 
(2)若曲線C的平行于直線l的切線的切點(diǎn)恰好介于點(diǎn)Q1,Q2之間(不與Q1,Q2重合),求a3的取值范圍;
(3)若a1=3,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省溫州市八校聯(lián)考高三(上)期初數(shù)學(xué)試卷 (文科)(解析版) 題型:解答題

如圖,已知直線L:y=kx-1與拋物線C:y=x2,相交于兩點(diǎn)A、B,設(shè)點(diǎn)M(0,2),△MAB的面積為S.
(1)若直線L上與M連線距離為1的點(diǎn)至多存在一個(gè),求S的范圍.
(2)若直線L上與M連線的距離為1的點(diǎn)有兩個(gè),分別記為C、D,且滿足S≥λ|CD|恒成立,求正數(shù)λ的范圍.

查看答案和解析>>

同步練習(xí)冊答案