若點A的坐標(biāo)為(3,1),點P在拋物線y2=4x上移動,F(xiàn)為拋物線的焦點,則|PF|+|PA|的最小值為( 。
A.3B.4C.5D.
5
+2
拋物線y2=4x的焦點F的坐標(biāo)是( 1,0 );
設(shè)點P在準(zhǔn)線上的射影為D,則根據(jù)拋物線的定義可知|PF|=|PD|
∴要求|PA|+|PF|取得最小值,即求|PA|+|PD|取得最小
當(dāng)D,P,A三點共線時|PA|+|PD|最小,為3-(-1)=4
故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知A,B,P為橢圓
x2
m2
+
y2
n2
=1(m,n>0)上不同的三點,且A,B連線經(jīng)過坐標(biāo)原點,若直線PA,PB的斜率乘積kPA•kPB=-2,則該橢圓的離心率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓
x2
4
+
y2
3
=1,F(xiàn)1F2是它的兩個焦點,P是這個橢圓上任意一點,那么當(dāng)|PF1|•|PF2|取最大值時,P、F1、F2三點( 。
A.共線
B.組成一個正三角形
C.組成一個等腰直角三角形
D.組成一個銳角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓
x2
16
+
y2
25
=1
上一點P到焦點F1的距離為6,則點P到另一個焦點F2的距離為(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的焦點坐標(biāo)為F1(-5,0),F(xiàn)2(5,0),離心率e=
5
3
,P為橢圓上一點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若PF1⊥PF2,求S△PF1F2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知F1,F(xiàn)2是橢圓
x2
16
+
y2
9
=1
的兩個焦點,過F2的直線交橢圓于點A,B,若|AB|=5,則|AF1|-|BF2|等于( 。
A.3B.8C.13D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若點P在橢圓x2+2y2=2上,F(xiàn)1、F2分別是橢圓的兩焦點,且∠F1PF2=90°,則△F1PF2的面積是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的兩個焦點分別為F1(0,-8),F(xiàn)2(0,8),且橢圓上一點到兩個焦點的距離之和為20,則此橢圓的方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

AB是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的任意一條與x軸不垂直的弦,O是橢圓的中心,e為橢圓的離心率,M為AB的中點,則KAB•KOM的值為( 。
A.e-1B.1-eC.e2-1D.1-e2

查看答案和解析>>

同步練習(xí)冊答案