已知F
1,F(xiàn)
2是橢圓
+=1的兩個焦點,過F
2的直線交橢圓于點A,B,若|AB|=5,則|AF
1|-|BF
2|等于( 。
∵過F
2的直線交橢圓
+=1于點A,B,
∴由橢圓的定義可知:|AF
1|+|AF
2|=8,
∵|AB|=5,
∴|AF
2|+|BF
2|=5
∴|AF
1|-|BF
2|=|AF
1|+|AF
2|-(|AF
2|+|BF
2|)=8-5=3,
故選A.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:填空題
(2手11•浙江)設F
1,F(xiàn)
2分別為橢圓
+y
2=1的焦點,點A,B在橢圓上,若
=5
;則點A的坐標是______.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知△ABC為正三角形,點A,B為橢圓的焦點,點C為橢圓一頂點,則該三角形的面積與橢圓的四個頂點連成的菱形的面積之比為( 。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
橢圓
+=1的焦點為F
1,F(xiàn)
2,兩條準線與x軸的交點分別為M,N,若|MN|≤2|F
1F
2|,則該橢圓離心率取得最小值時的橢圓方程為______.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若點A的坐標為(3,1),點P在拋物線y
2=4x上移動,F(xiàn)為拋物線的焦點,則|PF|+|PA|的最小值為( 。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
橢圓
+=1的左、右焦點分別為F
1,F(xiàn)
2,弦AB過F
1,若△ABF
2的內切圓周長為2π,A,B兩點的坐標分別為(x
1,y
1)和(x
2,y
2),則|y
2-y
1|的值為______.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設F
1、F
2是橢圓E:
+=1(a>b>0)的左、右焦點,P為直線
x=-a上一點,△F
1PF
2是底角為30°的等腰三角形,則E的離心率為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設點P是橢圓
+=1上一動點,F(xiàn)
1,F(xiàn)
2是橢圓的兩個焦點,若|PF
1|=6,則|OP|長為( 。
查看答案和解析>>