已知關(guān)于x的不等式<0的解集為M.
(1)當a=4時,求集合M;
(2)若3∈M且5∉M,求實數(shù)a的取值范圍.
【答案】分析:(1)當a=4時,不等式化為<0,推出同解不等式,利用穿根法解不等式求得集合M;
(2)對a=25,和a≠25時分類討論,用3∈M且5∉M,推出不等式組,然后解分式不等式組,求實數(shù)a的取值范圍.
解答:解:(1)a=4時,不等式化為<0,即(4x-5)(x2-4)<0
利用穿根法解得M=(-∞,-2)∪(,2).
(2)當a≠25時,由
∴a∈[1,)∪(9,25);
當a=25時,不等式為<0⇒M=(-∞,-5)∪(,5).
滿足3∈M且5∉M,∴a=25滿足條件.
綜上所述,得a的取值范圍是[1,)∪(9,25].
點評:本題考查其他不等式的解法,元素與集合關(guān)系的判斷,考查穿根法,分式不等式的解法,是中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知關(guān)于x的不等式ax2-2ax+x-2<0
(1)當a=3時,求此不等式解集;
(2)當a<0時,求此不等式解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(選修4-5:不等式選講)
已知關(guān)于x的不等式|x-a|+1-x>0的解集為R,(1)求實數(shù)a的取值范圍.(2)證明:若x-1<0,則a∈R.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關(guān)于x的不等式(a+b)x+(2a-3b)<0的解集是{x|x>3},則不等式(a-3b)x+(b-2a)>0的解集是
{x|x>
1
3
}
{x|x>
1
3
}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•楊浦區(qū)二模)已知關(guān)于x的不等式x2+mx-2<0解集為(-1,2).
(1)求實數(shù)m的值;
(2)若復數(shù)z1=m+2i,z2=cosα+isinα,z1•z2為純虛數(shù),求tan2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選作題,本題包括A、B、C、D四小題,請選定其中兩題,并在相應的答題區(qū)域內(nèi)作答.若多做,則按作答的前兩題評分.解答時應寫出文字說明、證明過程或演算步驟.
A.(幾何證明選講)
如圖,已知兩圓交于A、B兩點,過點A、B的直線分別與兩圓交于P、Q和M、N.求證:PM∥QN.
B.(矩陣與變換)
已知矩陣A的逆矩陣A-1=
10
02
,求矩陣A.
C.(極坐標與參數(shù)方程)
在平面直角坐標系xOy中,過橢圓
x2
12
+
y2
4
=1
在第一象限處的一點P(x,y)分別作x軸、y軸的兩條垂線,垂足分別為M、N,求矩形PMON周長最大值時點P的坐標.
D.(不等式選講)
已知關(guān)于x的不等式|x-a|+1-x>0的解集為R,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案