14.在△ABC中,$\frac{sinA}{sinB}=2,BCcosB+ACcosA=1$,則有如下說法:①AB=1;②△ABC面積的最大值為$\frac{1}{3}$;③當(dāng)△ABC面積取到的最大值時(shí),$AC=\frac{2}{3}$;則上述說法正確的個(gè)數(shù)為( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

分析 由正弦定理和余弦定理可得,a=2b,c=1.再由三角形的面積公式,化簡(jiǎn)整理,配方,運(yùn)用二次函數(shù)的最值可得面積的最大值,即可判斷正確個(gè)數(shù).

解答 解:在△ABC中,$\frac{sinA}{sinB}=2,BCcosB+ACcosA=1$,
可得a=2b,b•$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$+a•$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=c=1,
即AB=1;
設(shè)b=x,則a=2x,根據(jù)面積公式得S△ABC=$\frac{1}{2}$absinC=x2•sinC=x2•$\sqrt{1-co{s}^{2}C}$.
由余弦定理可得cosC=$\frac{5{x}^{2}-1}{4{x}^{2}}$,
∴S△ABC=x2•$\sqrt{1-(\frac{5{x}^{2}-1}{4{x}^{2}})^{2}}$=$\frac{1}{4}$$\sqrt{-9{x}^{4}+10{x}^{2}-1}$
=$\frac{1}{4}$$\sqrt{-9({x}^{2}-\frac{5}{9})^{2}+\frac{16}{9}}$,
由三角形三邊關(guān)系有:x+2x>1且x+1>2x,解得$\frac{1}{3}$<x<1,
故當(dāng)x=$\frac{\sqrt{5}}{3}$時(shí),S△ABC取得最大值$\frac{1}{3}$,
綜上可得①②正確,③錯(cuò)誤.
故選:C.

點(diǎn)評(píng) 本題考查三角形的正弦定理和余弦定理,以及三角形的面積公式的運(yùn)用,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)中,F(xiàn)1、F2是其左、右焦點(diǎn),A是其上頂點(diǎn),且∠F1AF2=60°.
(1)求橢圓C的離心率;
(2)經(jīng)過橢圓C的右焦點(diǎn)F2作傾斜角為45°的直線l,交橢圓C于M,N兩點(diǎn),且滿足$\overrightarrow{M{F}_{1}}•\overrightarrow{N{F}_{1}}$=-2,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在等差數(shù)列{an}中,a7=8,前7項(xiàng)和S7=42,則其公差是$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.sin17°•cos43°+sin73°•sin43°等于$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知平面直角坐標(biāo)系xoy內(nèi)兩個(gè)定點(diǎn)A(1,0)、B(4,0),滿足PB=2PA的點(diǎn)P(x,y)形成的曲線記為Γ.
(1)求曲線Γ的方程;
(2)過點(diǎn)B的直線l與曲線Γ相交于C、D兩點(diǎn),當(dāng)△COD的面積最大時(shí),求直線l的方程(O為坐標(biāo)原點(diǎn));
(3)設(shè)曲線Γ分別交x、y軸的正半軸于M、N兩點(diǎn),點(diǎn)Q是曲線Γ位于第三象限內(nèi)一段上的任意一點(diǎn),連結(jié)QN交x軸于點(diǎn)E、連結(jié)QM交y軸于F.求證四邊形MNEF的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若$\overrightarrow{AB}•\overrightarrow{BC}=0$,$|{\overrightarrow{AB}}|=1$,$|{\overrightarrow{BC}}|=2$,$\overrightarrow{AD}•\overrightarrow{DC}=0$,則$|{\overrightarrow{BD}}|$的最大值為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=2x-lnx的單調(diào)遞減區(qū)間為( 。
A.$({-∞,\frac{1}{2}})$B.$({\frac{1}{2},+∞})$C.$({0,\frac{1}{2}})$D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)y=f(x)是定義域?yàn)镽的偶函數(shù),當(dāng)x≥0時(shí),f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}+1,(x>2)}\\{\frac{5}{16}{x}^{2},(0≤x≤2)}\end{array}\right.$,若關(guān)于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且僅有6個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是( 。
A.[-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1]B.(-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1)C.(-$\frac{5}{2}$,-$\frac{9}{4}$)D.(-$\frac{9}{4}$,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.有下列幾個(gè)命題:
①平面α內(nèi)有無數(shù)個(gè)點(diǎn)到平面β的距離相等,則α∥β;
②α∩γ=a,α∩β=b,且a∥b(α,β,γ分別表示平面,a,b表示直線),則γ∥β;
③平面α內(nèi)一個(gè)三角形三邊分別平行于平面β內(nèi)的一個(gè)三角形的三條邊,則α∥β;
④平面α內(nèi)的一個(gè)平行四邊形的兩邊與平面β內(nèi)的一個(gè)平行四邊形的兩邊對(duì)應(yīng)平行,則α∥β.
其中正確的有③.(填序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案