A. | [-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1] | B. | (-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1) | C. | (-$\frac{5}{2}$,-$\frac{9}{4}$) | D. | (-$\frac{9}{4}$,-1) |
分析 要使關(guān)于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且只有6個不同實數(shù)根,轉(zhuǎn)化為t2+at+b=0必有兩個根t1、t2,分類討論求解.
解答 解:依題意f(x)在(-∞,-2)和(0,2)上遞增,在(-2,0)和(2,+∞)上遞減,
當x=±2時,函數(shù)取得極大值$\frac{5}{4}$;
當x=0時,取得極小值0.
要使關(guān)于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且只有6個不同實數(shù)根,
設(shè)t=f(x),
則t2+at+b=0必有兩個根t1、t2,
則有兩種情況符合題意:
(1)t1=$\frac{5}{4}$,且t2∈(1,$\frac{5}{4}$),
此時-a=t1+t2,
則a∈(-$\frac{5}{2}$,-$\frac{9}{4}$);
(2)t1∈(0,1],t2∈(1,$\frac{5}{4}$),
此時同理可得a∈(-$\frac{9}{4}$,-1),
綜上可得a的范圍是(-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1),
故選:B
點評 本題考查了分段函數(shù)與復(fù)合函數(shù)的應(yīng)用,需要分類討論,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | sin2 | C. | $\frac{2}{sin1}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com