【題目】自湖北爆發(fā)新型冠狀病毒肺炎疫情以來,湖北某市醫(yī)護(hù)人員和醫(yī)療、生活物資嚴(yán)重匱乏,全國(guó)各地紛紛馳援.某運(yùn)輸隊(duì)接到從武漢送往該市物資的任務(wù),該運(yùn)輸隊(duì)有8輛載重為6t的A型卡車,6輛載重為10t的B型卡車,10名駕駛員,要求此運(yùn)輸隊(duì)每天至少運(yùn)送240t物資.已知每輛卡車每天往返的次數(shù)為A型卡車5次,B型卡車4次,每輛卡車每天往返的成本A型卡車1200元,B型卡車1800元,則每天派出運(yùn)輸隊(duì)所花的成本最低為_____.
【答案】9600
【解析】
設(shè)每天派出A型卡車x輛,B型卡車y輛,運(yùn)輸隊(duì)所花成本為z元,根據(jù)題意把實(shí)際問題數(shù)學(xué)化,列出需要滿足的不等式組,注意x∈N,y∈N,把運(yùn)輸隊(duì)所花成本z看作目標(biāo)函數(shù),畫出可行域,根據(jù)目標(biāo)函數(shù)平移得到最值的取法.
設(shè)每天派出A型卡車x輛,B型卡車y輛,運(yùn)輸隊(duì)所花成本為z元,
則,且x∈N,y∈N,
目標(biāo)函數(shù)z=1200x+1800y,
畫出滿足條件的可行域如圖中陰影部分所示:
由圖可知,當(dāng)直線z=240x+378y經(jīng)過點(diǎn)B(8,0)時(shí),截距z最小,
∵在可行域的整數(shù)點(diǎn)中,點(diǎn)(8,0)使z取得最小值,
即zmin=1200×8+1800×0=9600,
∴每天排除A型卡車8輛,B型卡車0輛,運(yùn)輸隊(duì)所花的成本最低,
最低成本為9600元,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為實(shí)數(shù),函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)求在上的極大值與極小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是由正整數(shù)組成的無窮數(shù)列.若存在常數(shù),使得任意的成立,則稱數(shù)列具有性質(zhì).
(1)分別判斷下列數(shù)列是否具有性質(zhì); (直接寫出結(jié)論)
①
②
(2)若數(shù)列滿足,求證:“數(shù)列具有性質(zhì)”是“數(shù)列為常數(shù)列”的充分必要條件;
(3)已知數(shù)列中且.若數(shù)列具有性質(zhì),求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近五年來某草場(chǎng)羊只數(shù)量與草場(chǎng)植被指數(shù)兩變量間的關(guān)系如表所示,繪制相應(yīng)的散點(diǎn)圖,如圖所示:
年份 | 1 | 2 | 3 | 4 | 5 |
羊只數(shù)量(萬只) | 1.4 | 0.9 | 0.75 | 0.6 | 0.3 |
草地植被指數(shù) | 1.1 | 4.3 | 15.6 | 31.3 | 49.7 |
根據(jù)表及圖得到以下判斷:①羊只數(shù)量與草場(chǎng)植被指數(shù)成減函數(shù)關(guān)系;②若利用這五組數(shù)據(jù)得到的兩變量間的相關(guān)系數(shù)為,去掉第一年數(shù)據(jù)后得到的相關(guān)系數(shù)為,則;③可以利用回歸直線方程,準(zhǔn)確地得到當(dāng)羊只數(shù)量為2萬只時(shí)的草場(chǎng)植被指數(shù);以上判斷中正確的個(gè)數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|+|2x+2|,g(x)=|x+2|﹣|x﹣2a|+a.
(1)求不等式f(x)>4的解集;
(2)對(duì)x1∈R,x2∈R,使得f(x1)≥g(x2)成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+acosx.
(1)求函數(shù)f(x)的奇偶性.并證明當(dāng)|a|≤2時(shí)函數(shù)f(x)只有一個(gè)極值點(diǎn);
(2)當(dāng)a=π時(shí),求f(x)的最小值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年春節(jié)期間,新型冠狀病毒(2019﹣nCoV)疫情牽動(dòng)每一個(gè)中國(guó)人的心,危難時(shí)刻全國(guó)人民眾志成城.共克時(shí)艱,為疫區(qū)助力.我國(guó)S省Q市共100家商家及個(gè)人為緩解湖北省抗疫消毒物資壓力,募捐價(jià)值百萬的物資對(duì)口輸送湖北省H市.
(1)現(xiàn)對(duì)100家商家抽取5家,其中2家來自A地,3家來自B地,從選中的這5家中,選出3家進(jìn)行調(diào)研.求選出3家中1家來自A地,2家來自B地的概率.
(2)該市一商家考慮增加先進(jìn)生產(chǎn)技術(shù)投入,該商家欲預(yù)測(cè)先進(jìn)生產(chǎn)技術(shù)投入為49千元的月產(chǎn)增量.現(xiàn)用以往的先進(jìn)技術(shù)投入xi(千元)與月產(chǎn)增量yi(千件)(i=1,2,3,…,8)的數(shù)據(jù)繪制散點(diǎn)圖,由散點(diǎn)圖的樣本點(diǎn)分布,可以認(rèn)為樣本點(diǎn)集中在曲線的附近,且:,,,,,其中,,,根據(jù)所給的統(tǒng)計(jì)量,求y關(guān)于x回歸方程,并預(yù)測(cè)先進(jìn)生產(chǎn)技術(shù)投入為49千元時(shí)的月產(chǎn)增量.
附:對(duì)于一組數(shù)據(jù)(u1,v1)(u2,v2),其回歸直線v=α+βu的斜率和截距的最小二乘法估計(jì)分別為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,上頂點(diǎn)為A,過的直線與y軸交于點(diǎn)M,滿足(O為坐標(biāo)原點(diǎn)),且直線l與直線之間的距離為.
(1)求橢圓C的方程;
(2)在直線上是否存在點(diǎn)P,滿足?存在,指出有幾個(gè)這樣的點(diǎn)(不必求出點(diǎn)的坐標(biāo));若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有極值,且導(dǎo)函數(shù)的極值點(diǎn)是的零點(diǎn).
(1)求關(guān)于的函數(shù)關(guān)系式,并寫出定義域;
(2)證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com