精英家教網 > 高中數學 > 題目詳情

已知時有極大值6,在時有極小值,求的值;并求在區(qū)間[-3,3]上的最大值和最小值.

在區(qū)間[-3,3]上,當時,;當時,

解析試題分析:解:(1)由條件知
  .6分
(2)

x
-3
(-3,-2)
-2
(-2,1)
1
(1,3)
3

 

0

0

 



6




由上表知,在區(qū)間[-3,3]上,當時,;當時,.
12分
考點:導數的運用
點評:考查了導數在研究函數中的運用,求解函數的單調性,以及極值進而得到最值,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知,
(1)討論的單調區(qū)間;
(2)若對任意的,且,有,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求函數的單調區(qū)間;
(2)求函數在區(qū)間[0,3]上的最大值與最小值

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)當時,求的單調區(qū)間;
(2)若函數上無零點,求的最小值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數處取得極值.
(1)求實數的值;
(2)若關于的方程在區(qū)間上恰有兩個不同的實數根,求實數的取值范圍;
(3)證明:對任意的正整數,不等式都成立.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數(1)當時,求的最大值;(2)令,(),其圖象上任意一點處切線的斜率恒成立,求實數的取值范圍;(3)當,,方程有唯一實數解,求正數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知二次函數和“偽二次函數” .
(Ⅰ)證明:只要,無論取何值,函數在定義域內不可能總為增函數;
(Ⅱ)在同一函數圖像上任意取不同兩點A(),B(),線段AB中點為C(),記直線AB的斜率為k.
(1)對于二次函數,求證
(2)對于“偽二次函數” ,是否有(1)同樣的性質?證明你的結論。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數).
(1)當時,求證:上單調遞增;
(2)當時,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知為偶函數,曲線過點(2,5), .
(1)若曲線有斜率為0的切線,求實數的取值范圍;
(2)若當時函數取得極值,確定的單調區(qū)間.

查看答案和解析>>

同步練習冊答案