【題目】已知函數(shù).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)區(qū)間;
(2)設(shè),證明:當(dāng)時(shí),函數(shù)沒有極值點(diǎn).
【答案】(1)當(dāng)時(shí),在單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增,其中=;(2)證明見解析.
【解析】
(1)求函數(shù)求導(dǎo),對(duì)參數(shù)進(jìn)行分類討論,根據(jù)導(dǎo)數(shù)的正負(fù),即可容易判斷函數(shù)的單調(diào)性,從而求得單調(diào)區(qū)間;
(2)要證沒有極值點(diǎn),將問題轉(zhuǎn)化為求證在恒成立;結(jié)合(1)中所求可知當(dāng)時(shí),;構(gòu)造函數(shù),利用導(dǎo)數(shù)根據(jù)函數(shù)單調(diào)性,求得在時(shí)恒成立,則問題得解.
(1),,
當(dāng)時(shí),,
∴當(dāng)時(shí),,∴在單調(diào)遞增,
當(dāng)時(shí),令,解得,,
顯然,,
∴當(dāng)時(shí),,函數(shù)單調(diào)遞減,
當(dāng)時(shí),,函數(shù)單調(diào)遞增,
綜上所述,當(dāng)時(shí),在單調(diào)遞增,
當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;
(2),
由(1)可知時(shí),在是增函數(shù),
∴,
∴當(dāng)時(shí),,
下面證明:當(dāng)時(shí),,
設(shè),
∴,
∴,
∵,
∴,
∴在上為增函數(shù),
∴,
∴存在使得,即,
并且當(dāng)時(shí),,時(shí),,
∴在上為減函數(shù),在上為增函數(shù),
∴當(dāng)時(shí),有最小值,
∵,
∴,
∴,即,
∵,
∴當(dāng)時(shí),函數(shù)為增函數(shù),
∴在區(qū)間上沒有極值點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線的焦點(diǎn)的直線交拋物線于、兩點(diǎn),線段的中點(diǎn)的橫坐標(biāo)為,.
(1)求拋物線的方程;
(2)已知點(diǎn),過點(diǎn)作直線交拋物線于、兩點(diǎn),求的最大值,并求取得最大值時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x-m|-|2x+2m|(m>0).
(Ⅰ)當(dāng)m=1時(shí),求不等式f(x)≥1的解集;
(Ⅱ)若x∈R,t∈R,使得f(x)+|t-1|<|t+1|,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,己知是橢圓的右焦點(diǎn),是橢圓上位于軸上方的任意一點(diǎn),過作垂直于的直線交其右準(zhǔn)線于點(diǎn).
(1)求橢圓的方程;
(2)若,求證:直線與橢圓相切;
(3)在橢圓上是否存在點(diǎn),使四邊形是平行四邊形?若存在,求出所有符合條件的點(diǎn)的坐標(biāo):若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:()的離心率為,F是E的右焦點(diǎn),過點(diǎn)F的直線交E于點(diǎn)和點(diǎn)().當(dāng)直線與x軸垂直時(shí),.
(1)求橢圓E的方程;
(2)設(shè)直線l:交x軸于點(diǎn)G,過點(diǎn)B作x軸的平行線交直線l于點(diǎn)C.求證:直線過線段的中點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,過拋物線y2=2px(p>0)上一點(diǎn)P(1,2),作兩條直線分別交拋物線于A(x1,y1),B(x2,y2),當(dāng)PA與PB的斜率存在且傾斜角互補(bǔ)時(shí):
(1)求y1+y2的值;
(2)若直線AB在y軸上的截距b∈[﹣1,3]時(shí),求△ABP面積S△ABP的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)討論函數(shù)在上的單調(diào)性;
(2)設(shè),當(dāng)時(shí),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中e是自然對(duì)數(shù)的底數(shù),a,)在點(diǎn)處的切線方程是.
(1)求函數(shù)的單調(diào)區(qū)間.
(2)設(shè)函數(shù),若在上恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“珠算之父”程大位是我國明代著名的數(shù)學(xué)家,他的應(yīng)用巨著《算法統(tǒng)綜》中有一首“竹筒容米”問題:“家有九節(jié)竹一莖,為因盛米不均平,下頭三節(jié)四升五,上梢四節(jié)三升八,唯有中間兩節(jié)竹,要將米數(shù)次第盛,若有先生能算法,也教算得到天明.”((注)四升五:4.5升,次第盛:盛米容積依次相差同一數(shù)量.)用你所學(xué)的數(shù)學(xué)知識(shí)求得中間兩節(jié)竹的容積為
A. 2.2升B. 2.3升
C. 2.4升D. 2.5升
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com