在等比數(shù)列{an}中,前7項和S7=16,又a12+a22+…+a72=128,則a1-a2+a3-a4+a5-a6+a7=( 。
分析:把已知的前7項和S7=16利用等比數(shù)列的求和公式化簡,由數(shù)列{an2}是首項為a1,公比為q2的等比數(shù)列,故利用等比數(shù)列的求和公式化簡a12+a22+…+a72=128,變形后把第一個等式的化簡結(jié)果代入求出
a1(1+q7)
1+q
的值,最后把所求式子先利用等比數(shù)列的通項公式化簡,把前六項兩兩結(jié)合后,發(fā)現(xiàn)前三項為等比數(shù)列,故用等比數(shù)列的求和公式化簡,與最后一項合并后,將求出
a1(1+q7)
1+q
的值代入即可求出值.
解答:解:∵S7=
a1(1-q7)
1-q
=16,
∴a12+a22+…+a72=
a12(1-q14)
1-q2
=
a1(1-q7)
1-q
a1(1+q7)
1+q
=128,
a1(1+q7)
1+q
=8,
則a1-a2+a3-a4+a5-a6+a7
=(a1-a2)+(a3-a4)+(a5-a6)+a7
=a1(1-q)+a1q2(1-q)+a1q4(1-q)+a1q6
=
a1(1-q)(1-q6)
1-q2
+a1q6
=
a1(1+q7)
1+q

=8.
故選A
點評:此題考查了等比數(shù)列的通項公式,以及等比數(shù)列的前n項和公式,利用了整體代入的思想,熟練掌握公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,a4=
2
3
 , a3+a5=
20
9

(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{an}的公比大于1,且bn=log3
an
2
,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,若a1=1,公比q=2,則a12+a22+…+an2=(  )
A、(2n-1)2
B、
1
3
(2n-1)
C、4n-1
D、
1
3
(4n-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,如果a1+a3=4,a2+a4=8,那么該數(shù)列的前8項和為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,a1=1,8a2+a5=0,數(shù)列{
1
an
}
的前n項和為Sn,則S5=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,an>0且a2=1-a1,a4=9-a3,則a5+a6=
81
81

查看答案和解析>>

同步練習冊答案