運貨卡車以每小時x千米(x∈[c,100],且0<c<80)的速度勻速行駛m千米(m為正常數(shù)),若汽油的價格是每升7元,而汽車每小時耗油(6+
x2
800
)升,司機的工資是每小時14元,則這次行車的總費用最低時x的取值為(  )
A、cB、60C、80D、100
考點:基本不等式在最值問題中的應用
專題:應用題,不等式的解法及應用
分析:(Ⅰ)運貨的費用包含油費與司機的工資兩部分,根據(jù)汽油的價格是每升7元,而汽車每小時耗油(6+
x2
800
)升,司機的工資是每小時14元,可建立y關于x的函數(shù)解析式,利用基本不等式求最值即可.
解答: 解:由題意,運貨的費用包含油費與司機的工資兩部分,則
y=
m
x
×14+
m
x
×(6+
x2
800
)×7=7m(
8
x
+
x
800

∵x∈[c,100],且0<c<80,
∴x=80時,
8
x
+
x
800
1
5

即x=80時,行車的費用最低,最低費用為
7m
5
元,
故選:C.
點評:本題函考查數(shù)模型的選擇與應用,主要考查函數(shù)模型的構建及解決最低費用問題,關鍵是實際問題向數(shù)學問題的轉化,同時考查利用基本不等式求最值.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知:α,β是不同的平面,l,m,n是不同的直線,則下列說法正確的是( 。
A、
l∥m
l⊥α
m∥β
⇒α⊥β
B、
l⊥m
m?α
⇒l⊥α
C、
l⊥m
l⊥n
m?α
n?α
?l⊥α
D、
l∥β
m∥β
l?α
m?α
⇒α∥β

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(x)=5sin(2x+
π
6
)+
7
2

(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的單調減區(qū)間;
(3)當
π
6
≤x≤
π
2
時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求(2a3-3b210的展開式中第8項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

P,Q是三角形ABC邊BC上兩點,且BP=QC,求證:
AB
+
AC
=
AP
+
AQ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若曲線y2-xy+2x+k=0過點(a,-a)(a∈R),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等邊三角形PAB的邊長為2,四邊形ABCD為矩形,AD=4,平面PAB⊥平面ABCD,E,F(xiàn),G分別是線段AB,CD,PD上的點.
(1)如圖1,若G為線段PD的中點,BE=DF=
2
3
,證明:PB∥平面EFG;
(2)如圖2,若E,F(xiàn)分別是線段AB,CD的中點,DG=2GP,試問:矩形ABCD內(nèi)(包括邊界)能否找到點H,使之同時滿足下面兩個條件,并說明理由.
①點H到點F的距離與點H到直線AB的距離之差大于4;
②GH⊥PD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將指數(shù)形式256=2x化為對數(shù)形式,下列結果正確的是( 。
A、log2256=8
B、log2562=8
C、log8256=2
D、log2568=2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A,B,C是直線l上的三點,向量
OA
,
OB
,
OC
滿足
OA
=[f(x)+2f′(1)x]
OB
-lnx
OC
,則函數(shù)y=f(x)的表達式是( 。
A、f(x)=lnx-
2
3
x+1
B、f(x)=lnx-
2
3
x
C、f(x)=lnx+2x+1
D、f(x)=lnx+2x

查看答案和解析>>

同步練習冊答案