Processing math: 15%
15.已知中心在原點,焦點在坐標(biāo)軸上的橢圓E的方程為x2a2+y22=1(a>b>0)它的離心率為33,一個焦點是(-1,0),過直線x=3上一點M引橢圓E的兩條切線,切點分別是A和B.
(Ⅰ)求橢圓E的方程;
(Ⅱ)若在橢圓E:x2a2+y22=1(a>b>0)上的點(x0,y0)處的切線方程是x0xa2+y0y2=1.求證:直線AB恒過定點,并求出定點的坐標(biāo);
(Ⅲ)記點C為(Ⅱ)中直線AB恒過的定點,問是否存在實數(shù)λ,使得|{\overrightarrow{AC}}|+|{\overrightarrow{BC}}|=λ|{\overrightarrow{AC}}|•|{\overrightarrow{BC}}|成立,若成立求出λ的值,若不存在,請說明理由.

分析 (Ⅰ)設(shè)橢圓方程為\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)的焦點是(-1,0),故c=1,再由離心率為\frac{{\sqrt{3}}}{3},求出a和b的值,從而求得橢圓E的方程;
(Ⅱ)設(shè)切點坐標(biāo)為A(x1,y1),B(x2,y2),直線l上一點M的坐標(biāo)(3,t),求出切線方程,再把點M代入切線方程,說明點A,B的坐標(biāo)都適合方x+\frac{t}{2}y=1,而兩點之間確定唯一的一條直線,從而求出定點;
(Ⅲ)將直線AB的方程x+\frac{t}{2}y=1,代入橢圓方程,求出兩根的積和兩根的和,求出\overrightarrow{|AC|}\overrightarrow{|BC|}的長,求出λ的值看在不在,再進行判斷.

解答 (Ⅰ)解:設(shè)橢圓方程為\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)的焦點是(-1,0),故c=1,
\frac{c}{a}=\frac{{\sqrt{3}}}{3},∴a=\sqrt{3},b=\sqrt{2},
∴所求的橢圓E的方程為\frac{x^2}{3}+\frac{y^2}{2}=1;
(Ⅱ)證明:設(shè)切點坐標(biāo)為A(x1,y1),B(x2,y2),直線l上一點M的坐標(biāo)(3,t),
則切線方程分別為\frac{{{x_1}x}}{3}+\frac{{{y_1}y}}{2}=1\frac{{{x_2}x}}{3}+\frac{{{y_2}y}}{2}=1,
又兩切線均過點M,即{x_1}+\frac{t}{2}{y_1}=1,{x_2}+\frac{t}{2}{y_2}=1,即點A,B的坐標(biāo)都適合方程x+\frac{t}{2}y=1,
故直線AB的方程是x+\frac{t}{2}y=1,顯然直線x+\frac{t}{2}y=1恒過點(1,0),故直線AB恒過定點(1,0);
(Ⅲ)解:將直線AB的方程x+\frac{t}{2}y=1,代入橢圓方程,
(\frac{t^2}{2}+3){y^2}-2ty-4=0,
{y_1}+{y_2}=\frac{4t}{{{t^2}+6}},{y_1}{y_2}=\frac{-8}{{{t^2}+6}},不妨設(shè)y1>0,y2<0,
|{\overrightarrow{AC}}|=\frac{{\sqrt{{t^2}+4}}}{2}{y_1},同理|{\overrightarrow{BC}}|=-\frac{{\sqrt{{t^2}+4}}}{2}{y_2}
\frac{1}{{|{\overrightarrow{AC}}|}}+\frac{1}{{|{\overrightarrow{BC}}|}}=\frac{2}{{\sqrt{{t^2}+4}}}(\frac{1}{y_1}-\frac{1}{y_2})=\frac{2}{{\sqrt{{t^2}+4}}}•\frac{{\sqrt{48({t^2}+4)}}}{8}=\sqrt{3}
|{\overrightarrow{AC}}|+|{\overrightarrow{BC}}|=\sqrt{3}|{\overrightarrow{AC}}|•|{\overrightarrow{BC}}|,
故存在實數(shù)λ=\sqrt{3},使得|{\overrightarrow{AC}}|+|{\overrightarrow{BC}}|=λ|{\overrightarrow{AC}}|•|{\overrightarrow{BC}}|成立.

點評 本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與圓錐曲線的綜合,考查運算求解能力,注意解題方法的積累,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知扇形的圓心角為\frac{π}{5},半徑等于20,則扇形的弧長為(  )
A.B.\frac{200}{π}C.D.\frac{100}{π}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某工廠生產(chǎn)甲、乙兩種產(chǎn)品,每種產(chǎn)品都分為正品與次品.其中生產(chǎn)甲產(chǎn)品為正品的概率是\frac{4}{5},生產(chǎn)乙產(chǎn)品為正品的概率是\frac{3}{4};生產(chǎn)甲乙兩種產(chǎn)品相互獨立,互不影響.生產(chǎn)一件甲產(chǎn)品,若是正品可盈利40元,若是次品則虧損5元;生產(chǎn)一件乙產(chǎn)品,若是正品可盈利50元,若是次品則虧損10元.計算以下問題:
(Ⅰ)記X為生產(chǎn)1件甲產(chǎn)品和1件乙產(chǎn)品所得的總利潤,求隨機變量X的分布列和數(shù)學(xué)期望;
(Ⅱ)求生產(chǎn)4件產(chǎn)品甲所獲得的利潤不少于110元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知m,n是不重合的直線,α,β是不重合的平面,有下列命題
①若α∩β=n,m∥n,則m∥α,m∥β;     
②若m⊥α,m⊥β,則α∥β;
③若m∥α,m⊥n,則n⊥α;             
④若m⊥α,n?α,則m⊥n;
其中所有真命題的序號是( �。�
A.②④B.②③C.①④D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知某公司現(xiàn)有職員150人,其中中級管理人員30人,高級管理人員10人,要從公司抽取30個人進行身體健康檢查,如果采用分層抽樣的方法,則職員中“中級管理人員”和“高級管理人員”各應(yīng)該抽取的人數(shù)為( �。�
A.8,2B.8,3C.6,3D.6,2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖:Rt△ABC中,∠CAB=90°,AB=2,AC=\frac{\sqrt{2}}{2},曲線E過C點,動點P在E上運動,且保持|PA|+|PB|的值不變.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求曲線E的標(biāo)準(zhǔn)方程;
(2)過B點且傾斜角為120°的直線l交曲線E于M,N兩點,求|MN|的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在直角坐標(biāo)系xOy中,已知點P(1,-2),直線l:\;\left\{{\begin{array}{l}{x=1+\frac{{\sqrt{2}}}{2}t}\\{y=2+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.( t為參數(shù)),以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ=2cosθ,直線l和曲線C的交點為A、B.
(1)求直線l和曲線C的普通方程;
(2)求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知圓C:x2+y2=4,直線l:ax+y+2a=0,當(dāng)直線l與圓C相交于A,B兩點,且|AB|=2\sqrt{2}時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=(logmx)2+2logmx-3(m>0,且m≠1).
(Ⅰ)當(dāng)m=2時,解不等式f(x)<0;
(Ⅱ)f(x)<0在[2,4]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案