【題目】如圖,在直角坐標(biāo) 中,設(shè)橢圓 的左右兩個(gè)焦點(diǎn)分別為 ,過(guò)右焦點(diǎn) 且與 軸垂直的直線 與橢圓 相交,其中一個(gè)交點(diǎn)為 .

(1)求橢圓 的方程;

【答案】
(1)解:由橢圓定義可知
由題意 , .
又由Rt△ 可知 , ,
,得
橢圓 的方程為
(2)已知 經(jīng)過(guò)點(diǎn) 且斜率為 直線 與橢圓 有兩個(gè)不同的 交點(diǎn),請(qǐng)問(wèn)是否存在常數(shù) ,使得向量 共線?如果存在,求出 的值;如果不存在,請(qǐng)說(shuō)明理由.
解:設(shè)直線 的方程為
代入橢圓方程,得
整理,得
因?yàn)橹本 與橢圓 有兩個(gè)不同的交點(diǎn) 等價(jià)于 ,
解得
設(shè) ,則 ,
由①得

因?yàn)? , 所以
所以 共線等價(jià)于
將②③代入上式,解得
因?yàn)?
所以不存在常數(shù) ,使得向量 共線
【解析】(1)根據(jù)題目中所給的條件的特點(diǎn),由橢圓定義可知|MF1|+|MF2|=2a,由題意|MF2|=1,由Rr△MF1F2可知b的值,則橢圓C的方程可求;
(2)利用向量共線的條件建立等式,再根據(jù)韋達(dá)定理,由此能求出不存在這樣的常數(shù)k滿足條件.解題時(shí)要認(rèn)真審題,注意向量共線的條件的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C的方程:x2+y2﹣2x﹣4y+m=0,其中m<5.
(1)若圓C與直線l:x+2y﹣4=0相交于M,N兩點(diǎn),且|MN|= ,求m的值;
(2)在(1)條件下,是否存在直線l:x﹣2y+c=0,使得圓上有四點(diǎn)到直線l的距離為 ,若存在,求出c的范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,直角梯形ACDE與等腰直角三角形ABC所在平面互相垂直,F為BC的中點(diǎn),, ,.

(1)求證:平面平面;

(2)求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某玩具生產(chǎn)公司每天計(jì)劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共 個(gè),生產(chǎn)一個(gè)衛(wèi)兵需 分鐘,生產(chǎn)一個(gè)騎兵需 分鐘,生產(chǎn)一個(gè)傘兵需 分鐘,已知總生產(chǎn)時(shí)間不超過(guò) 小時(shí),若生產(chǎn)一個(gè)衛(wèi)兵可獲利潤(rùn) 元,生產(chǎn)一個(gè)騎兵可獲利潤(rùn) 元,生產(chǎn)一個(gè)傘兵可獲利潤(rùn) 元.

(1)用每天生產(chǎn)的衛(wèi)兵個(gè)數(shù) 與騎兵個(gè)數(shù) 表示每天的利潤(rùn) (元);
(2)怎么分配生產(chǎn)任務(wù)才能使每天的利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面α過(guò)正方體ABCD﹣A1B1C1D1的面對(duì)角線 ,且平面α⊥平面C1BD,平面α∩平面ADD1A1=AS,則∠A1AS的正切值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,E、F分別為PC、BD的中點(diǎn),側(cè)面PAD⊥底面ABCD.

(1)求證:EF∥平面PAD;

(2)若EF⊥PC,求證:平面PAB⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“石頭、剪刀、布”,又稱(chēng)“猜丁殼”,是一種流傳多年的猜拳游戲,起源于中國(guó),然后傳到日本、朝鮮等地,隨著亞歐貿(mào)易的不斷發(fā)展,它傳到了歐洲,到了近代逐漸風(fēng)靡世界.其游戲規(guī)則是:出拳之前雙方齊喊口令,然后在話音剛落時(shí)同時(shí)出拳,握緊的拳頭代表“石頭”,食指和中指伸出代表“剪刀”,五指伸開(kāi)代表“布”.“石頭”勝“剪刀”、“剪刀”勝“布”、而“布”又勝過(guò)“石頭”.若所出的拳相同,則為和局.小千和大年兩位同學(xué)進(jìn)行“五局三勝制”的“石頭、剪刀、布”游戲比賽,則小千和大年比賽至第四局小千勝出的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 “直線 與圓 相交”; :“方程 有一正根和一負(fù)根”.若 為真, 非p為真,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在四棱錐C﹣ABDE中,DB⊥平面ABC,AE∥DB,△ABC是邊長(zhǎng)為2的等邊三角形,AE=1,M為AB的中點(diǎn).
(1)求證:CM⊥EM;
(2)若直線DM與平面ABC所成角的正切值為2,求二面角B﹣CD﹣E的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案