【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),證明:對任意的.
【答案】(1)見解析(2)見解析
【解析】試題分析:(Ⅰ)求出導(dǎo)函數(shù),對參數(shù)a進(jìn)行分類討論,得出導(dǎo)函數(shù)的正負(fù),判斷原函數(shù)的單調(diào)性;(Ⅱ)整理不等式得ex-lnx-2>0,構(gòu)造函數(shù)h(x)=ex-lnx-2,則可知函數(shù)h'(x)在(0,+∞)單調(diào)遞增, 所以方程h'(x)=0在(0,+∞)上存在唯一實(shí)根x0,即得出函數(shù)的最小值為h(x)min=h(x0)=ex0lnx02=即ex﹣lnx﹣2>0在(0,+∞)上恒成立,即原不等式成立.
試題解析:
解:(Ⅰ)由題意知,函數(shù)f(x)的定義域?yàn)椋?,+∞),
由已知得.
當(dāng)a≤0時(shí),f'(x)>0,函數(shù)f(x)在(0,+∞)上單調(diào)遞增,
所以函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,+∞).
當(dāng)a>0時(shí),由f'(x)>0,得,由f'(x)<0,得,
所以函數(shù)f(x)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
綜上,當(dāng)a≤0時(shí),函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,+∞);
當(dāng)a>0時(shí),函數(shù)f(x)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
(Ⅱ)證明:當(dāng)a=1時(shí),不等式f(x)+ex>x2+x+2可變?yōu)?/span>ex﹣lnx﹣2>0,令h(x)=ex﹣lnx﹣2,則,可知函數(shù)h'(x)在(0,+∞)單調(diào)遞增,
而,
所以方程h'(x)=0在(0,+∞)上存在唯一實(shí)根x0,即.
當(dāng)x∈(0,x0)時(shí),h'(x)<0,函數(shù)h(x)單調(diào)遞減;
當(dāng)x∈(x0,+∞)時(shí),h'(x)>0,函數(shù)h(x)單調(diào)遞增; 所以.
即ex﹣lnx﹣2>0在(0,+∞)上恒成立,
所以對任意x>0,f(x)+ex>x2+x+2成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的兩個(gè)頂點(diǎn)分別為A(2,0),B(2,0),焦點(diǎn)在x軸上,離心率為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)點(diǎn)D為x軸上一點(diǎn),過D作x軸的垂線交橢圓C于不同的兩點(diǎn)M,N,過D作AM的垂線交BN于點(diǎn)E.求證:△BDE與△BDN的面積之比為4:5.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=kax﹣a﹣x(a>0且a≠1)在(﹣∞,+∞)上既是奇函數(shù)又是增函數(shù),則函數(shù)g(x)=loga(x+k)的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某書店共有韓寒的圖書6種,其中價(jià)格為25元的有2種,18元的有3種,16元的有1種.書店若把這6種韓寒的圖書打包出售,據(jù)統(tǒng)計(jì)每套的售價(jià)與每天的銷售數(shù)量如下表所示:
售價(jià)x/元 | 105 | 108 | 110 | 112 |
銷售數(shù)量y/套 | 40 | 30 | 25 | 15 |
(1)根據(jù)上表,利用最小二乘法得到回歸直線方程,求;
(2)若售價(jià)為100元,則每天銷售的套數(shù)約為多少(結(jié)果保留到整數(shù))?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有甲乙兩個(gè)班級進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績后,得到如下的列聯(lián)表.
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
甲班 | 10 | ||
乙班 | 30 | ||
合計(jì) | 105 |
已知在全部105人中隨機(jī)抽取一人為優(yōu)秀的概率為.
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按97.5%的可靠性要求,能否認(rèn)為“成績與班級有關(guān)系”;
(3)若按下面的方法從甲班優(yōu)秀的學(xué)生抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進(jìn)行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)之和為被抽取人的序號.試求抽到10或11號的概率.
參考公式和數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上的函數(shù),它的圖象關(guān)于點(diǎn)(1,0)對稱,當(dāng)x≤1時(shí),f(x)=2xe﹣x(e為自然對數(shù)的底數(shù)),則f(2+3ln2)的值為( )
A.48ln2
B.40ln2
C.32ln2
D.24ln2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解籃球愛好者小張的投籃命中率與打籃球時(shí)間之間的關(guān)系,下表記錄了小張某月1號到5號每天打籃球時(shí)間(單位:小時(shí))與當(dāng)天投籃命中率之間的關(guān)系:
時(shí)間 | 1 | 2 | 3 | 4 | 5 |
命中率 | 0.4 | 0.5 | 0.6 | 0.6 | 0.4 |
(1)求小張這天的平均投籃命中率;
(2)利用所給數(shù)據(jù)求小張每天打籃球時(shí)間(單位:小時(shí))與當(dāng)天投籃命中率之間的線性回歸方程;(參考公式:)
(3)用線性回歸分析的方法,預(yù)測小李該月號打小時(shí)籃球的投籃命中率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C在以AB為直徑的圓O上,PA垂直于圓O所在的平面,G為△AOC的重心.
(1)求證:平面OPG⊥平面PAC;
(2)若PA=AB=2AC=2,求二面角A﹣OP﹣G的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com