已知向量
a
=(1,-2)
b
=(x,y)

(Ⅰ)若x,y分別表示將一枚質(zhì)地均勻的正方體骰子(六個(gè)面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次時(shí)第一次,第二次出現(xiàn)的點(diǎn)數(shù),求滿足
a
b
=-1
的概率;
(Ⅱ)若x,y∈[1,6],求滿足
a
b
>0
的概率.
分析:(1)本小題考查的知識(shí)點(diǎn)是古典概型,關(guān)鍵是要找出滿足條件滿足
a
b
=-1
的基本事件個(gè)數(shù),及總的基本事件的個(gè)數(shù),再代入古典概型公式進(jìn)行計(jì)算求解.
(2)本小題考查的知識(shí)點(diǎn)是幾何概型的意義,關(guān)鍵是要畫出滿足條件的圖形,結(jié)合圖形分析,找出滿足條件的點(diǎn)集對應(yīng)的圖形面積,及圖形的總面積.
解答:精英家教網(wǎng)解:(Ⅰ)設(shè)(x,y)表示一個(gè)基本事件,
則拋擲兩次骰子的所有基本事件有(1,1),(1,2),
(1,3),(1,4),(1,5),(1,6),(2,1),
(2,2),,(6,5),(6,6),共36個(gè).(2分)
用A表示事件“
a
b
=-1
”,即x-2y=-1
則A包含的基本事件有(1,1),(3,2),(5,3),共3個(gè).
∴P(A)=
3
36
=
1
12

答:事件“
a
b
=-1
”的概率為
1
12

xyOOx=1Ox=6Oy=1Oy=6Ox-2y=0O

(Ⅱ)用B表示事件“
a
b
>0
”,即x-2y>0
試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域?yàn)?BR>{(x,y)|1≤x≤6,1≤y≤6}
構(gòu)成事件B的區(qū)域?yàn)?BR>{(x,y)|1≤x≤6,1≤y≤6,x-2y>0}
如圖所示:所以所求的概率為P(B)=
1
2
×4×2
5×5
=
4
25

答:事件“
a
b
>0
”的概率為
4
25
點(diǎn)評:古典概型要求所有結(jié)果出現(xiàn)的可能性都相等,強(qiáng)調(diào)所有結(jié)果中每一結(jié)果出現(xiàn)的概率都相同.弄清一次試驗(yàn)的意義以及每個(gè)基本事件的含義是解決問題的前提,正確把握各個(gè)事件的相互關(guān)系是解決問題的關(guān)鍵.解決問題的步驟是:計(jì)算滿足條件的基本事件個(gè)數(shù),及基本事件的總個(gè)數(shù),然后代入古典概型計(jì)算公式進(jìn)行求解.
幾何概型的概率估算公式中的“幾何度量”,可以為線段長度、面積、體積等,而且這個(gè)“幾何度量”只與“大小”有關(guān),而與形狀和位置無關(guān).解決的步驟均為:求出滿足條件A的基本事件對應(yīng)的“幾何度量”N(A),再求出總的基本事件對應(yīng)的“幾何度量”N,最后根據(jù)P=
N(A)
N
求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,
3
)
,
b
=(-2,0)
,則|
a
+
b
|
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,1)
b
=(2,3)
,向量λ
a
-
b
垂直于y軸,則實(shí)數(shù)λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,
1-x
x
), 
b
=(x-1,1)
,則|
a
+
b
|
的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,1,2)
b
=(-1,k,3)
垂直,則實(shí)數(shù)k的值為
-5
-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•西城區(qū)二模)已知向量
a
=(1,
3
)
a
+
b
=(0, 
3
)
,設(shè)
a
b
的夾角為θ,則θ=
120°
120°

查看答案和解析>>

同步練習(xí)冊答案