曲線y=ln(2x-1)上的點(diǎn)到直線2x-y+8=0的最短距離是______.
∵曲線y=ln(2x-1),
∴y′=
2
2x-1
,分析知直線2x-y+8=0與曲線y=ln(2x-1)相切的點(diǎn)到直線2x-y+8=0的距離最短,
y′═
2
2x-1
=2,解得x=1,把x=1代入y=ln(2x-1),
∴y=0,∴點(diǎn)(1,0)到直線2x-y+8=0的距離最短,
∴d=
|2+8|
4+1
=
10
5
5
=2
5

故答案為2
5
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=ln(2x-1)上的點(diǎn)到直線2x-y+3=0的最短距離是( 。
A、
5
B、2
5
C、3
5
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=ln(2x-1)上的點(diǎn)到直線2x-y+8=0的最短距離是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黑龍江)設(shè)點(diǎn)P在曲線y=
1
2
ex
上,點(diǎn)Q在曲線y=ln(2x)上,則|PQ|最小值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=ln(2x)上任意一點(diǎn)P到直線y=2x的距離的最小值是
5
5
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點(diǎn)P在曲線y=
1
2
ex+1上,點(diǎn)Q在曲線y=ln(2x-2)上,則|PQ|最小值為(  )
A、1-ln2
B、
2
(2-ln2)
C、1+ln2
D、
2
(1+ln2)

查看答案和解析>>

同步練習(xí)冊答案