△ABC的外接圓的圓心為O,半徑為2,,則向量方向上的投影為( )
A.
B.3
C.
D.-3
【答案】分析:由題意畫出圖形,借助與圖形利用向量方向上的投影的定義即可求解.
解答:解:由題意因?yàn)椤鰽BC的外接圓的圓心為O,半徑為2,

對于?,
所以可以得到圖形為:因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/20131024191055510191387/SYS201310241910555101913007_DA/6.png">,所以四邊形ABOC為平行四邊形,又由于,所以三角形OAB為正三角形且邊長為2,所以四邊形ABOC為邊長為2且角ABO為60°的菱形,所以向量方向上的投影為:=
故選:A
點(diǎn)評:此題考查了兩個(gè)向量的夾角定義,還考查向量在另外一個(gè)向量上的投影的定義及學(xué)生的分析問題的數(shù)形結(jié)合的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知三點(diǎn)A(-2,0)、B(2,0)C(1,
3
)
,△ABC的外接圓為圓,橢圓
x2
4
+
y2
2
=1
的右焦點(diǎn)為F.
(1)求圓M的方程;
(2)若點(diǎn)P為圓M上異于A、B的任意一點(diǎn),過原點(diǎn)O作PF的垂線交直線x=2
2
于點(diǎn)Q,試判斷直線PQ與圓M的位置關(guān)系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•佛山一模)已知A(-2,0),B(2,0),C(m,n).
(1)若m=1,n=
3
,求△ABC的外接圓的方程;
(2)若以線段AB為直徑的圓O過點(diǎn)C(異于點(diǎn)A,B),直線x=2交直線AC于點(diǎn)R,線段BR的中點(diǎn)為D,試判斷直線CD與圓O的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(0,1),B,C是x軸上兩點(diǎn),且|BC|=6(B在C的左側(cè)).設(shè)△ABC的外接圓的圓心為M.
(Ⅰ)已知
AB
AC
=-4
,試求直線AB的方程;
(Ⅱ)當(dāng)圓M與直線y=9相切時(shí),求圓M的方程;
(Ⅲ)設(shè)|AB|=l1,|AC|=l2,s=
l1
l2
+
l2
l1
,試求s的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•朝陽區(qū)一模)如圖,圓O是△ABC的外接圓,過點(diǎn)C作圓O的切線交BA的延長線于點(diǎn)D.若CD=
3
,AB=AC=2,則線段AD的長是
1
1
;圓O的半徑是
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年北京市房山區(qū)良鄉(xiāng)中學(xué)高三數(shù)學(xué)會(huì)考模擬試卷(4)(解析版) 題型:解答題

已知點(diǎn)A(0,1),B,C是x軸上兩點(diǎn),且|BC|=6(B在C的左側(cè)).設(shè)△ABC的外接圓的圓心為M.
(Ⅰ)已知,試求直線AB的方程;
(Ⅱ)當(dāng)圓M與直線y=9相切時(shí),求圓M的方程;
(Ⅲ)設(shè)|AB|=l1,|AC|=l2,,試求s的最大值.

查看答案和解析>>

同步練習(xí)冊答案