【題目】已知橢圓C:l(a>b>0)經(jīng)過(guò)點(diǎn)(,1),且離心率e.
(1)求橢圓C的方程;
(2)若直線l與橢圓C相交于AB兩點(diǎn),且滿(mǎn)足∠AOB=90°(O為坐標(biāo)原點(diǎn)),求|AB|的取值范圍.
【答案】(1);(2)[,2].
【解析】
(1)點(diǎn)的坐標(biāo)代入可得一個(gè)關(guān)系式,離心率得,結(jié)合可求得,得橢圓方程;
(2)當(dāng)直線l的斜率不存在時(shí), 設(shè)直線l為:x=m,代入計(jì)算,當(dāng)直線的斜率存在時(shí),設(shè)直線為:y=kx+m,A(x,y),B(,),代入橢圓中整理,由韋達(dá)定理得,代入得出的關(guān)系,計(jì)算,用換元法轉(zhuǎn)化為求二次函數(shù)的取值范圍得出結(jié)論.
(1)由題意:e,1,a2=b2+c2,解得:a2=8,b2=4,所以橢圓的方程為:;
(2)當(dāng)直線l的斜率不存在時(shí),設(shè)直線l為:x=m,A(x,y),B(,),代入橢中:y2=4(1),
∠AOB=90°,∴0,∴x+y=m2﹣4(1)=0,∴m2,
∴|AB|=|y﹣|=4;
當(dāng)直線的斜率存在時(shí),設(shè)直線為:y=kx+m,A(x,y),B(,),代入橢圓中整理得:
(1+2k2)x2+4kmx+2m2﹣8=0,
x+,x,=k2xx'+km(x+)+m2,
∵∠AOB=90°,∴x+y=0,∴2m2﹣8+m2﹣8k2=0,∴3m2=8+8k2,
|AB|,
令t∈(0,1],所以|AB|,
當(dāng)t,g(t)=1(t2﹣t)最大為 ,t=1時(shí),g(t)取得最小值1,
綜上所述:|AB|的取值范圍[,2].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的頂點(diǎn)為平面直角坐標(biāo)系的坐標(biāo)原點(diǎn),焦點(diǎn)為圓的圓心.經(jīng)過(guò)點(diǎn)的直線交拋物線于兩點(diǎn),交圓于兩點(diǎn),在第一象限,在第四象限.
(1)求拋物線的方程;
(2)是否存在直線使是與的等差中項(xiàng)?若存在,求直線的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某摩托車(chē)生產(chǎn)企業(yè),上年度生產(chǎn)摩托車(chē)的投入成本為1萬(wàn)元/輛,出廠價(jià)為1.2萬(wàn)元/輛,年銷(xiāo)售量為1000輛.本年度為適應(yīng)市場(chǎng)需求,計(jì)劃提高產(chǎn)品檔次,適度增加投入成本.若每輛車(chē)投入成本增加的比例為x(0<x<1),則出廠價(jià)相應(yīng)的提高比例為0.75x,同時(shí)預(yù)計(jì)年銷(xiāo)售量增加的比例為0.6x.已知年利潤(rùn)=(出廠價(jià)﹣投入成本)×年銷(xiāo)售量.
(1)寫(xiě)出本年度預(yù)計(jì)的年利潤(rùn)y與投入成本增加的比例x的關(guān)系式;
(2)為使本年度的年利潤(rùn)比上年有所增加,問(wèn)投入成本增加的比例x應(yīng)在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)圓C與兩圓,中的一個(gè)內(nèi)切,另一個(gè)外切.
(1)求C的圓心軌跡L的方程;
(2)已知點(diǎn),,且P為L上動(dòng)點(diǎn),求的最大值及此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知曲線,曲線,P是平面上一點(diǎn),若存在過(guò)點(diǎn)P的直線與都有公共點(diǎn),則稱(chēng)P為“C1—C2型點(diǎn)”.
(1)在正確證明的左焦點(diǎn)是“C1—C2型點(diǎn)”時(shí),要使用一條過(guò)該焦點(diǎn)的直線,試寫(xiě)出一條這樣的直線的方程(不要求驗(yàn)證);
(2)設(shè)直線與有公共點(diǎn),求證,進(jìn)而證明原點(diǎn)不是“C1—C2型點(diǎn)”;
(3)求證:圓內(nèi)的點(diǎn)都不是“C1—C2型點(diǎn)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)若討論的單調(diào)性;
(2)當(dāng)時(shí),若函數(shù)與的圖象有且僅有一個(gè)交點(diǎn),求的值(其中表示不超過(guò)的最大整數(shù),如.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】輥?zhàn)邮强图覀鹘y(tǒng)農(nóng)具,南方農(nóng)民犁開(kāi)田地后,仍有大的土塊.農(nóng)人便用六片葉齒組成輥軸,兩側(cè)裝上木板,人跨開(kāi)兩腳站立,既能掌握平衡,又能增加重量,讓牛拉動(dòng)輥軸前進(jìn),壓碎土塊,以利于耕種.這六片葉齒又對(duì)應(yīng)著菩薩六度,即布施持戒忍辱精進(jìn)禪定與般若.若甲乙每人依次有放回地從這六片葉齒中隨機(jī)取一片,則這兩人選的葉齒對(duì)應(yīng)的“度”相同的概率為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面多邊形中,,,,,,為的中點(diǎn),現(xiàn)將三角形沿折起,使.
(1)證明:平面;
(2)求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com