已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一個焦點到它的一條漸近線的距離等于實軸長的
1
4
,則該雙曲線的離心率為( 。
A、
2
B、
3
C、
5
2
D、
5
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:由已知中雙曲線的焦點到其漸近線的距離等于實軸長的
1
4
,通過漸近線、離心率等幾何元素,溝通a,b,c的關(guān)系,即可求出該雙曲線的離心率.
解答: 解:∵焦點F(c,0)到漸近線y=
b
a
x
的距離等于實軸長的
1
4

bc
a2+b2
=2a×
1
4
,∴a=2b
∴e2=1+
b2
a2
=
5
4

∴e=
5
2

故選:C.
點評:本題考查的知識點是雙曲線的簡單性質(zhì),雙曲線的漸近線與離心率存在對應(yīng)關(guān)系,通過a,b,c的比例關(guān)系可以求離心率,也可以求漸近線方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

湖面上漂著一個表面積為400π的小球,湖水結(jié)冰后將球取出,冰面上留下了一個深2厘米的空穴,則該空穴表面圓形的直徑為
 
厘米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某青年歌手大獎賽有5名歌手參賽,共邀請6名評委現(xiàn)場打分,得分統(tǒng)計如下表:

歌手
評委   得分
歌手1歌手2歌手3歌手4歌手5
評委19.088.898.808.918.81
評委29.128.958.868.869.12
評委39.188.958.998.909.00
評委49.159.009.058.809.04
評委59.158.909.108.939.04
評委69.199.029.179.039.15
比賽規(guī)則:從6位評委打分中去掉一個最高分,去掉一個最低分,根據(jù)剩余4位評委打分算出平均分作為該歌手的最終得分.
(1)根據(jù)最終得分,確定5位歌手的名次;
(2)若對評委水平的評價指標(biāo)規(guī)定為:計數(shù)他對每位歌手打分中最高分、最低分出現(xiàn)次數(shù)的和,和越小則評判水平越高.請以此為標(biāo)準(zhǔn),對6位評委的評判水平進行評價,以便確定下次聘請其中的4位評委.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知D是函數(shù)y=f(x),x∈[a,b]圖象上的任意一點,A,B該圖象的兩個端點,點C滿足
AC
AB
,
DC
i
=0(其中0<λ<1,
i
是y軸上的單位向量),若|
DC
|≤T(T為常數(shù))在區(qū)間[a,b]上恒成立,則稱y=f(x)在區(qū)間[a,b]上具有“T性質(zhì)”.現(xiàn)有函數(shù):①y=2x+1;②y=
2
x
+1
;③y=x2;④
OB
.則在區(qū)間[1,2]上具有“
1
4
性質(zhì)”的函數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)矩陣M是把坐標(biāo)平面上的點的縱坐標(biāo)伸長到原來的2倍,橫坐標(biāo)保持不變的伸縮變換.
(Ⅰ)求矩陣M;
(Ⅱ)求矩陣M的特征值以及屬于每個特征值的一個特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-
1
2x
,且2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點P(-4,4)作直線l與圓O:x2+y2=4相交于A、B兩點.
(Ⅰ)若直線l的斜率為-
1
2
,求弦AB的長;
(Ⅱ)若一直線與圓O相切于點Q且與x軸的正半軸,y軸的正半軸圍成一個三角形,當(dāng)該三角形面積最小時,求點Q的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知五條線段的長度分別為2,3,4,5,6,若從中任選三條,則能構(gòu)成三角形的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)從甲、乙、丙、丁、戊5名大學(xué)生中選出4名參加雅安地震志愿者服務(wù)活動,分別從事心理輔導(dǎo)、醫(yī)療服務(wù)、清理垃圾、照顧老人這四項工作,若甲不能從事心理輔導(dǎo)工作,則不同安排方案的種數(shù)是
 

查看答案和解析>>

同步練習(xí)冊答案