【題目】如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,點(diǎn)E、F分別在棱BB1、CC1上,且BE=BB1,C1F=CC1.
(1)求異面直線AE與A1F所成角的大小;
(2)求平面AEF與平面ABC所成角的余弦值.
【答案】(1)60.(2)
【解析】
試題本題的關(guān)鍵是建立適當(dāng)?shù)目臻g直角 坐標(biāo)系,
建立坐標(biāo)系如圖,寫出相關(guān)向量坐標(biāo),利用向量夾角公式即可;
由(1)求出平面和平面的法向量n和m,利用即可,注意在本題中
平面與平面所成的角為銳角,所以
試題解析: (1)建立如圖所示的直角坐標(biāo)系,則
,,,,從而
,.
記與的夾角為,則有
.
又由異面直線與所成角的范圍為,可得異面直線與所成的角為
(2)記平面和平面的法向量分別為n和m,則由題設(shè)可令,且有平面的法向量為,,.
由,得;由,得.
所以,即.記平面與平面所成的角為,有.
由題意可知為銳角,所以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中,,點(diǎn)是中點(diǎn),且,現(xiàn)將三角形沿折起,使點(diǎn)到達(dá)點(diǎn)的位置,且與平面所成的角為.
(1)求證:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,直線,若直線上存在點(diǎn),過點(diǎn)引圓的兩條切線,使得,則實(shí)數(shù)的取值范圍是( )
A. B. [,]
C. D. )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,,,F分別在線段BC和AD上,,將矩形ABEF沿EF折起記折起后的矩形為MNEF,且平面平面ECDF.
Ⅰ求證:平面MFD;
Ⅱ若,求證:;
Ⅲ求四面體NFEC體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在下列四個(gè)正方體中,A,B為正方體的兩個(gè)頂點(diǎn),M,N,Q為所在棱的中點(diǎn),則在這四個(gè)正方體中,直線AB與平面MNQ不垂直的是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓,分別為其左、右焦點(diǎn),過的直線與此橢圓相交于兩點(diǎn),且的周長(zhǎng)為8,橢圓的離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)在平面直角坐標(biāo)系中,已知點(diǎn)與點(diǎn),過的動(dòng)直線(不與軸平行)與橢圓相交于兩點(diǎn),點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn).求證:
(i)三點(diǎn)共線.
(ii).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知斜率為1的直線與橢圓交于,兩點(diǎn),且線段的中點(diǎn)為,橢圓的上頂點(diǎn)為.
(1)求橢圓的離心率;
(2)設(shè)直線與橢圓交于兩點(diǎn),若直線與的斜率之和為2,證明:過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), ().
(Ⅰ)若直線和函數(shù)的圖象相切,求的值;
(Ⅱ)當(dāng)時(shí),若存在正實(shí)數(shù),使對(duì)任意,都有恒成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com