下列說(shuō)法錯(cuò)誤的是( 。
A、平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行
B、一個(gè)平面內(nèi)的兩條相交直線與另外一個(gè)平面平行,則這兩個(gè)平面平行
C、一條直線與一個(gè)平面內(nèi)的兩條直線都垂直,則該直線與此平面垂直
D、如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,則它們的交線平行
考點(diǎn):命題的真假判斷與應(yīng)用,空間中直線與直線之間的位置關(guān)系,空間中直線與平面之間的位置關(guān)系
專題:空間位置關(guān)系與距離,簡(jiǎn)易邏輯
分析:利用直線與平面平行的判定定理判斷A的正誤;利用平面與平面平行的判定定理判斷B的正誤;利用直線與平面垂直的判定定理判斷C的正誤;利用平面與平面平行的性質(zhì)定理判斷D的正誤;
解答: 解:對(duì)于A,滿足直線與平面平行的判定定理,∴A正確;
對(duì)于B,滿足平面與平面平行的判定定理,∴B正確;
對(duì)于C,不滿足直線與平面垂直的判定定理,∴C不正確;
對(duì)于D,滿足兩個(gè)平面平行的性質(zhì)定理,∴D正確;
故選:C.
點(diǎn)評(píng):本題考查直線與平面、平面與平面平行與垂直的判定與性質(zhì)定理的應(yīng)用,基本知識(shí)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于函數(shù)f(x)=ax3,(a≠0)有以下說(shuō)法:
①x=0是f(x)的極值點(diǎn).
②當(dāng)a<0時(shí),f(x)在(-∞,+∞)上是減函數(shù).
③若a>0且x≠0則f(x)+f(
1
x
)
有最小值是2a.
④f(x)的圖象與(1,f(1))處的切線必相交于另一點(diǎn).
其中說(shuō)法正確的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在下列四個(gè)選項(xiàng)中,說(shuō)法錯(cuò)誤的是(  )
A、若A是B的必要不充分條件,則非B也是非A的必要不充分條件
B、“
a>0
△=b2-4ac≤0
”是“一元二次不等式ax2+bx+c≥0的解集為R”的充要條件
C、“x≠1”是“x2≠1”的充分不必要條件
D、“x≠0”是“x+|x|>0”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

學(xué)校為了了解學(xué)生每天課外閱讀的時(shí)問(wèn)(單位:分鐘),抽取了n個(gè)學(xué)生進(jìn)行調(diào)查,結(jié)果顯示這些學(xué)生的課外閱讀時(shí)間都在[10,50),其頻率分布直方圖如圖所示,其中時(shí)間在[30,50)的學(xué)生有67人,則n的值是(  )
A、100B、120
C、130D、390

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-3x<0},B={x||x-2|<1},則“a∈A”是“a∈B”的( 。
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

畫出一個(gè)計(jì)算“1-3+5-7+…+2011-2013”的值的程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)左焦點(diǎn)F1(-c,0)作傾斜角為30°的直線L交雙曲線右支于點(diǎn)P,線段PF1的中點(diǎn)在y軸上,雙曲線右焦點(diǎn)F2(c,0)到雙曲線的漸近線的距離是2.
(Ⅰ)求雙曲線的方程;   
(Ⅱ)設(shè)以F1F2為直徑的圓與直線L交于點(diǎn)Q,過(guò)右焦點(diǎn)F2和點(diǎn)Q的直線L′與雙曲線交于A、B兩點(diǎn),求弦|AB|的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知橢圓C的兩個(gè)焦點(diǎn)分別為F1(-1,0)、F2(1,0),且F2到直線x-
3
y-9=0的距離等于橢圓的短軸長(zhǎng).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若圓P的圓心為P(0,t)(t>0),且經(jīng)過(guò)F1、F2,Q是橢圓C上的動(dòng)點(diǎn)且在圓P外,過(guò)Q作圓P的切線,切點(diǎn)為M,當(dāng)|QM|的最大值為
3
2
2
時(shí),求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xe-2x(x∈R).
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)若函數(shù)y=h(x)的圖象與函數(shù)y=f(x)的圖象關(guān)于直線x=
1
2
對(duì)稱.求證:當(dāng)x>
1
2
時(shí),f(x)>h(x).
(Ⅲ)如果x1≠x2,且f(x1)=f(x2),證明:x1+x2>1.

查看答案和解析>>

同步練習(xí)冊(cè)答案