Loading [MathJax]/jax/output/CommonHTML/jax.js
7.已知點O為△ABC內(nèi)一點,∠AOB=120°,OA=1,OB=2,過O作OD垂直AB于點D,點E為線段OD的中點,則OEEA的值為(  )
A.514B.27C.314D.328

分析 由題意可得 ODAD=0,計算OEEA=OD2•(-AE)=|OD|24.△AOB中,利用余弦定理可得AB=7,再利用面積法求得OD=37,從而求得OEEA=|OD|24 的值.

解答 解:如圖:點O為△ABC內(nèi)一點,∠AOB=120°,OA=1,OB=2,
過O作OD垂直AB于點D,點E為線段OD的中點,∴ODAD=0,
OEEA=OD2•(-AE)=-12ODAO+AD2=-AOOD+ODAD4
=OAOD4=|OA||OD|cosAOD4=|OD|24
△AOB中,利用余弦定理可得AB2=OA2+OB2-2OA•OB•cos120°=1+4+2=7,∴AB=7
∵S△AOB=12ABOD=12OA•OB•sin120°,可得127•OD=121232,
∴OD=37,∴OEEA=|OD|24=328
故選:D.

點評 本題主要考查兩個向量的加減法的法則,以及其幾何意義,兩個向量的數(shù)量積的定義,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A={5},B={4,5},則A∩B=(  )
A.B.{4}C.{5}D.{4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.從某地區(qū)一次中學(xué)生知識競賽中,隨機(jī)抽取了30名學(xué)生的成績,繪成如圖所示的2×2列聯(lián)表 (甲組優(yōu)秀,乙組一般):
甲組乙組合計
男生76
女生512
合計
(1)試問有沒有90%的把握認(rèn)為成績分在甲組或乙組與性別有關(guān);
(2)①如果用分層抽樣的方法從甲組和乙組中抽取5人,再從5人中隨機(jī)抽取2人,那么至少有1人在甲組的概率是多少?
②用樣本估計總體,把頻率作為概率,若從該地區(qū)所有的中學(xué)(人數(shù)很多)中隨機(jī)抽取3人,用ξ表示所選3人中甲組的人數(shù),試寫出ξ的分布列,并求出ξ的數(shù)學(xué)期望.K2=nadbc2a+ba+da+cb+d,其中n=a+b+c+d
獨立性檢驗臨界表:
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.冪函數(shù)f(x)=xa的圖象經(jīng)過點(8,2),則f(18)的值為( �。�
A.14B.13C.12D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)的對應(yīng)關(guān)系如表所示,數(shù)列{an}滿足a1=3,an+1=f(an),則a2016=1.
x123
f(x)321

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.等比數(shù)列{an}中,已知a1=1,a4=8,若a3,a5分別為等差數(shù)列{bn}的第4項和第16項.
(1)求數(shù)列{an}﹑{bn}的通項公式;
(2)令cn=an•bn,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合A={1,2,3,4},B={0,1,3,5},則A∩B等于( �。�
A.{1,3}B.{2,4}C.{0,5}D.{0,1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.對于任意的x∈R,e|2x+1|+m≥0恒成立,則實數(shù)m的取值范圍是[-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=ln(x2-x)的單調(diào)遞增區(qū)間是(1,+∞).

查看答案和解析>>

同步練習(xí)冊答案