(2007•深圳二模)如圖,⊙M和⊙O交于A、B兩點(diǎn),點(diǎn)M在⊙O上,⊙O的弦MC分別與弦AB、⊙M交于D、E兩點(diǎn),若MD=1,DC=3,則⊙M的半徑為
2
2
分析:先延長CM交圓M與點(diǎn)H,在圓O中用相交弦定理求出BD•DA=3;再在圓M中用相交弦定理即可得到關(guān)于半徑的等量關(guān)系,即可求出⊙M的半徑.
解答:解:先延長CM交圓M與點(diǎn)H.
在圓O中有:MD•DC=BD•DA=3;
在圓M中有:BD•DA=DE•DH=3
⇒DE•DH=(r-1)(1+r)=3⇒r=2(負(fù)值舍).
故答案為:2.
點(diǎn)評:本題主要考查與圓有關(guān)的比例線段以及相交弦定理的應(yīng)用.解決本題的關(guān)鍵在于在兩個(gè)圓中用兩次相交弦定理.得到關(guān)于半徑的方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2007•深圳二模)如圖,已知命題:若矩形ABCD的對角線BD與邊AB和BC所成角分別為α,β,則cos2α+cos2β=1,若把它推廣到長方體ABCD-A1B1C1D1中,試寫出相應(yīng)命題形式:
長方體ABCD-A1B1C1D1中,對角線BD1與棱AB、BB1、BC所成的角分別為α、β、γ,則cos2α+cos2β+cos2γ=1,或是sin2α+sin2β+sin2γ=2.
長方體ABCD-A1B1C1D1中,對角線BD1與棱AB、BB1、BC所成的角分別為α、β、γ,則cos2α+cos2β+cos2γ=1,或是sin2α+sin2β+sin2γ=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•深圳二模)已知集合M={-1,0},則滿足M∪N={-1,0,1}的集合N的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•深圳二模)已知雙曲線
x2
a2
-
y2
b2
=1
的兩條漸近線互相垂直,則雙曲線的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•深圳二模)把正奇數(shù)數(shù)列{2n-1}的各項(xiàng)從小到大依次排成如下三角形狀數(shù)表記M(s,t)表示該表中第s行的第t個(gè)數(shù),則表中的奇數(shù)2007對應(yīng)于.( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•深圳二模)某中學(xué)有高一學(xué)生400人,高二學(xué)生300人,高三學(xué)生500人,現(xiàn)用分層抽樣的方法在這三個(gè)年級(jí)中抽取120人進(jìn)行體能測試,則從高三抽取的人數(shù)應(yīng)為(  )

查看答案和解析>>

同步練習(xí)冊答案