已知對任意x,恒有y≥sin2x+4sin2xcos2x,求y的最小值.

答案:
解析:

  解:令u=sin2x+4sin2xcos2x

  則u=sin2x+sin22x=(1-cos2x)+(1-cos22x)

 。剑璫os22x-cos2x+=-(cos2x+)2,

  得umax

  由y≥u知ymin


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知對任意x,恒有y≥sin2x+4sin2xcos2x,求y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知對任意x,恒有y≥sin2x+4sin2xcos2x,求y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知對任意x,恒有y≥sin2x+4sin2xcos2x,求y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):4.9 三角函數(shù)的最值(解析版) 題型:解答題

已知對任意x,恒有y≥sin2x+4sin2xcos2x,求y的最小值.

查看答案和解析>>

同步練習(xí)冊答案