科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知直線L:與拋物線C:,相交于兩點,設(shè)點,的面積為.
(Ⅰ)若直線L上與連線距離為的點至多存在一個,求的范圍。
(Ⅱ)若直線L上與連線的距離為的點有兩個,分別記為,且滿足 恒成立,求正數(shù)的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
橢圓過點P,且離心率為,F(xiàn)為橢圓的右焦點,、兩點在橢圓上,且 ,定點(-4,0).
(Ⅰ)求橢圓C的方程;
(Ⅱ)當(dāng)時 ,問:MN與AF是否垂直;并證明你的結(jié)論.
(Ⅲ)當(dāng)、兩點在上運動,且 =6時, 求直線MN的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的焦點分別為,直線交軸于點,且.
(1)試求橢圓的方程;
(2)過分別作互相垂直的兩直線與橢圓分別交于D、E、M、N四點(如圖所示),試求四邊形面積的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題11分)如圖1,拋物線y=ax2+bx+c(a≠0)的頂點為(1,4),交x軸于A、B,交y軸于D,其中B點的坐標(biāo)為(3,0)
(1)求拋物線的解析式
(2)如圖2,過點A的直線與拋物線交于點E,交y軸于點F,其中E點的橫坐標(biāo)為2,若直線PQ為拋物線的對稱軸,點G為PQ上一動點,則軸上是否存在一點H,使D、G、F、H四點圍成的四邊形周長最小.若存在,求出這個最小值及G、H的坐標(biāo);若不存在,請說明理由.
(3)如圖3,拋物線上是否存在一點,過點作軸的垂線,垂足為,過點作直線,交線段于點,連接,使~,若存在,求出點的坐標(biāo);若不存在,說明理由.
圖1 圖2 圖3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分) 如圖,為半圓,AB為半圓直徑,O為半圓圓心,且OD⊥AB,Q為線段OD的中點,已知|AB|=4,曲線C過Q點,動點P在曲線C上運動且保持|PA|+|PB|的值不變.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線C的方程;
(2)過D點的直線l與曲線C相交于不同的兩點M、N,且M在D、N之間,設(shè)=λ,求λ的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com