7.下面各組函數(shù)中是同一函數(shù)的是( 。
(1)$y=\sqrt{-2{x^3}}與y=x\sqrt{-2x}$
(2)$y={(\sqrt{x})^2}$與y=|x|
(3)$y=\sqrt{x+1}•\sqrt{x-1}與y=\sqrt{(x+1)(x-1)}$
(4)f(x)=x2-2x-1與g(t)=t2-2t-1.
A.(1)(3)(4)B.(1)(2)(3)C.(3)(4)D.(4)

分析 根據(jù)兩個函數(shù)的定義域相同,對應(yīng)關(guān)系也相同,判斷它們是同一函數(shù)即可.

解答 解:(1)$y=\sqrt{-2{x^3}}與y=x\sqrt{-2x}$,它們定義域相同為{x|x≤0},而對應(yīng)關(guān)系不相同,∴不是同一函數(shù);
(2)$y={(\sqrt{x})^2}$的定義域為{x|x≥0},而y=|x|的定義域為R,它們定義域不同,∴不是同一函數(shù);
(3)$y=\sqrt{x+1}•\sqrt{x-1}$的定義域為{x|1≥x≥-1},而$y=\sqrt{(x+1)(x-1)}$的定義域為{x|-1≥x或x≥1},它們定義域不同,∴不是同一函數(shù);
(4)f(x)=x2-2x-1與g(t)=t2-2t-1.它們的定義域為R,定義域相同,對應(yīng)關(guān)系也相同,∴是同一函數(shù);
故選:D.

點評 本題考查了判斷兩個函數(shù)是否為同一函數(shù)的問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\frac{cosx}{{e}^{x}}$,則函數(shù)f(x)的圖象在點(0,f(0))處的切線方程為(  )
A.x+y+1=0B.x+y-1=0C.x-y+1=0D.x-y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知不恒為零的函數(shù)f(x)=xlog2(ax+$\sqrt{a{x^2}+b}$)是偶函數(shù).
(1)求a,b的值;
(2)求不等式f(x-2)<log2(1+$\sqrt{2}$)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.確定 y=$\frac{x}{{x}^{2}+1}$的單調(diào)區(qū)間,并求函數(shù)的極大值、極小值、最大值、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若cos($\frac{π}{6}$-α)=$\frac{1}{3}$,則sin($\frac{5π}{6}$-2α)=( 。
A.-$\frac{4\sqrt{2}}{9}$B.$\frac{9}{4}$C.-$\frac{7}{9}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}滿足a1=1,an+1=$\frac{{{2^{n+1}}{a_n}}}{{{a_n}+{2^n}}}$.
(1)求數(shù)列{an}的通項公式;
(2)bn=n(n+1)an,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{an}滿足:an2=an-1•an+1(n≥2),若a2=3,a2+a4+a6=21,則a4+a6+a8=(  )
A.84B.63C.42D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)數(shù)列{an}是集合{3s+3t|0≤s<t,且s,t∈Z}中所有的數(shù)從小到大排列成的數(shù)列,即a1=4,a2=10,a3=12,a4=28,a5=30,a6=36,…,將數(shù)列{an}中各項按照上小下大,左小右大的原則排成如圖等腰直角三角形數(shù)表,a200的值為( 。
A.39+319B.310+319C.319+320D.310+320

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,矩形長為6,為4,在矩形內(nèi)隨機地撒300顆黃豆,數(shù)得落在橢圓外的黃豆數(shù)為100顆,以此實驗數(shù)據(jù)為依據(jù)可以估計出橢圓的面積為16.

查看答案和解析>>

同步練習(xí)冊答案