【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC.
(1)求證:D1C⊥AC1;
(2)設(shè)E是DC上一點,試確定E的位置,使D1E∥平面A1BD,并說明理由.
【答案】
(1)證明:在直四棱柱ABCD﹣A1B1C1D1中,
連接C1D,∵DC=DD1,
∴四邊形DCC1D1是正方形.∴DC1⊥D1C.
又AD⊥DC,AD⊥DD1,DC⊥DD1=D,
∴AD⊥平面DCC1D1,D1C平面DCC1D1,
∴AD⊥D1C.∵AD,DC1平面ADC1,
且AD⊥DC=D,∴D1C⊥平面ADC1,
又AC1平面ADC1,∴D1C⊥AC1
(2)解:連接AD1,連接AE,
設(shè)AD1∩A1D=M,BD∩AE=N,連接MN,∵平面AD1E∩平面A1BD=MN,
要使D1E∥平面A1BD,
須使MN∥D1E,
又M是AD1的中點.∴N是AE的中點.
又易知△ABN≌△EDN,∴AB=DE.
即E是DC的中點.
綜上所述,當E是DC的中點時,可使D1E∥平面A1BD.
【解析】(1)要證D1C⊥AC1;需證D1C⊥平面ADC1即可(2)確定E的位置,使D1E∥平面A1BD,設(shè)AD1∩A1D=M,BD∩AE=N,連接MN,證明MN∥D1E即可.
【考點精析】利用空間中直線與平面之間的位置關(guān)系和直線與平面平行的性質(zhì)對題目進行判斷即可得到答案,需要熟知直線在平面內(nèi)—有無數(shù)個公共點;直線與平面相交—有且只有一個公共點;直線在平面平行—沒有公共點;一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行;簡記為:線面平行則線線平行.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列敘述正確的是 .
① G為△ABC的重心,.
② 為△ABC的垂心;
③ 為△ABC的外心;
④ O為△ABC的內(nèi)心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A(﹣ ,0),B( ,0),P是平面內(nèi)的一個動點,直線PA與PB交于點P,且它們的斜率之積是﹣ .
(1)求動點P的軌跡C的方程;
(2)設(shè)直線l:y=kx+1與曲線C交于M、N兩點,當線段MN的中點在直線x+2y=0上時,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標值衡量,并依據(jù)質(zhì)量指標值劃分等極如下表:
質(zhì)量指標值 | |||
等級 | 三等品 | 二等品 | 一等品 |
從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測后得到如下的頻率分布直方圖:
(1)根據(jù)以上抽樣調(diào)查數(shù)據(jù) ,能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品90%”的規(guī)定?
(2)在樣本中,按產(chǎn)品等極用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;
(3)該企業(yè)為提高產(chǎn)品質(zhì)量,開展了“質(zhì)量提升月”活動,活動后再抽樣檢測,產(chǎn)品質(zhì)量指標值近似滿足,則“質(zhì)量提升月”活動后的質(zhì)量指標值的均值比活動前大約提升了多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的圓心在坐標原點,且與直線l1:x﹣y﹣2 =0相切 (Ⅰ)求直線l2:4x﹣3y+5=0被圓C所截得的弦AB的長.
(Ⅱ)過點G(1,3)作兩條與圓C相切的直線,切點分別為M,N,求直線MN的方程
(Ⅲ) 若與直線l1垂直的直線l與圓C交于不同的兩點P,Q,若∠POQ為鈍角,求直線l縱截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABCD中,E,F(xiàn)分別是BC,DC的中點,G為交點,若 = , = ,試以 , 為基底表示 、 、 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)教師對所任教的兩個班級各抽取20名學(xué)生進行測試,分數(shù)分布如表:
分數(shù)區(qū)間 | 甲班頻率 | 乙班頻率 |
[0,30) | 0.1 | 0.2 |
[30,60) | 0.2 | 0.2 |
[60,90) | 0.3 | 0.3 |
[90,120) | 0.2 | 0.2 |
[120,150) | 0.2 | 0.1 |
(Ⅰ)若成績120分以上(含120分)為優(yōu)秀,求從乙班參加測試的90分以上(含90分)的同學(xué)中,隨機任取2名同學(xué),恰有1人為優(yōu)秀的概率;
(Ⅱ)根據(jù)以上數(shù)據(jù)完成下面的2×2列聯(lián)表:在犯錯概率小于0.1的前提下,你是否有足夠的把握認為學(xué)生的數(shù)學(xué)成績是否優(yōu)秀與班級有關(guān)系?
優(yōu)秀 | 不優(yōu)秀 | 總計 | |
甲班 | |||
乙班 | |||
總計 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
,其中n=a+b+c+d.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com