【題目】如圖所示為一正方體的平面展開圖,在這個正方體中,有下列四個命題:
①AF⊥GC;
②BD與GC成異面直線且夾角為60;
③BD∥MN;
④BG與平面ABCD所成的角為45.
其中正確的個數是( )
A. 1 B. 2 C. 3 D. 4
科目:高中數學 來源: 題型:
【題目】如圖,已知直線和直線,射線的一個法向量為,點為坐標原點,,,點、分別是直線、上的動點,直線和之間的距離為2,于點,于點;
(1)若,求的值;
(2)若,求的最大值;
(3)若,,求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,邊長為4的正方形中,半徑為1的動圓Q的圓心Q在邊CD和DA上移動(包含端點A,C,D),P是圓Q上及其內部的動點,設,則的取值范圍是_____________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知兩點、,動點在軸上的射影是,且.
(1)求動點的軌跡方程;
(2)設直線、的兩個斜率存在,分別記為、,若,求點的坐標;
(3)若經過點的直線與動點的軌跡有兩個交點、,當時,求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線的極坐標方程為.以極點為原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數方程為(為參數).
(1)判斷直線與曲線的位置關系,并說明理由;
(2)若直線和曲線相交于,兩點,求.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學生人均課外學習時間是指單日內學生不在教室內的平均學習時間,這種課外學習時間對學生的學習有一定的影響.合肥市經開區(qū)某著名高中學生群體有走讀生和住校生兩種,調查顯示:當群體中的學生為走讀生時,走讀生的人均課外學習時間(單位分鐘)為,而住校生的人均課外學習時間恒為40分鐘,試根據上述調查結果回答下列問題:
(1)當為何值時,住校生的人均課外學習時間等于走讀生的課外人均學習時間?
(2)求該校高中學生群體的人均課外學習時間的表達式,并求的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com