在△ABC中,已知角A為銳角,且
(1)將f(A)化簡(jiǎn)成f(A)=Msin(ωA+φ)+N的形式;
(2)若,求邊AC的長(zhǎng).
【答案】分析:(1)通過(guò)二倍角公式化簡(jiǎn)分式的分子,分母然后利用兩角和的正弦函數(shù)即可把函數(shù)化簡(jiǎn)成f(A)=Msin(ωA+φ)+N的形式;
(2)利用f(A)求出A的值,得到B,C的值,利用正弦定理求出AC的值即可.
解答:解:(1)(2分)
=(1分)
=(1分)
=(2分)
(2)由,∴.(2分)
,∴.∴.(A,B,C各(1分)共3分)
在△ABC中,由正弦定理得:.∴(2分)
點(diǎn)評(píng):本題是基礎(chǔ)題,考查三角函數(shù)的公式的應(yīng)用,正弦定理的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知角A,B,C的對(duì)邊分別為a,b,c,若A,B,C成等差數(shù)列,且b=
3
,c=
2
,則B=
 
,A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知角A為銳角,角A、B、C的對(duì)邊分別為a、b、c,sinA=
2
2
3

(1)求tan2
B+C
2
+sin2
A
2
的值;
(2)若a=2
2
,S△ABC=
2
,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知角A、B、C對(duì)應(yīng)的三邊分別為a,b,c,滿足(a+b+c)(a+b-c)=3ab,則角C的大小等于
π
3
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知角A,B,C滿足2B=A+C,且tanA和tanB是方程x2-λx+λ+1=0的兩根,若△ABC的面積為3+
3
,試求△ABC的三邊的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知角A,B,C的對(duì)邊分別是a,b,c,且a2+b2-c2=
3
ab

(1)求角C的大小;
(2)如果0<A≤
3
m=2cos2
A
2
-sinB-1
,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案