【題目】在平面直角坐標系中,已知點A(0,0),B(4,3),若A,B,C三點按順時針方向排列構(gòu)成等邊三角形ABC,且直線BC與x軸交于點D.
(1)求cos∠CAD的值;
(2)求點C的坐標.

【答案】
(1)解:設(shè)∠BAD=α,∠CAD=β,且AB=5,

由三角函數(shù)的定義得 ,

故cosβ=cos(60°﹣α)═ ,


(2)解:設(shè)點C(x,y).

由(1)知sinβ=sin(60°﹣α)= ,

因為AC=AB=5,

所以 , ,

故點


【解析】(1)由題意畫出圖象,設(shè)∠BAD=α、∠CAD=β,由三角函數(shù)的定義求出cosα、sinα的值,由β=60°﹣α和兩角差的余弦函數(shù)求出cosβ的值,可得答案;(2)設(shè)點C(x,y),由(1)和兩角差的正弦函數(shù)求出sinβ,由三角函數(shù)的定義求出x和y,可得答案.
【考點精析】根據(jù)題目的已知條件,利用兩角和與差的余弦公式和兩角和與差的正弦公式的相關(guān)知識可以得到問題的答案,需要掌握兩角和與差的余弦公式:;兩角和與差的正弦公式:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=xe2x﹣lnx﹣ax.
(1)當a=0時,求函數(shù)f(x)在[ ,1]上的最小值;
(2)若x>0,不等式f(x)≥1恒成立,求a的取值范圍;
(3)若x>0,不等式f( )﹣1≥ e + 恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定圓,定直線,過的一條動直線與直線相交于,與圓相交于, 兩點, 中點.

)當垂直時,求證: 過圓心

)當,求直線的方程.

)設(shè),試問是否為定值,若為定值,請求出的值;若不為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C:和點,P是圓上一點,線段BP的垂直平分線交CPM點,則M點的軌跡方程為______;若直線lM點的軌跡相交,且相交弦的中點為,則直線l的方程是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知, .

1)若的充分不必要條件,求實數(shù)的取值范圍;

(2)若,為真命題,“”為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax3﹣bx2+cx+b﹣a(a>0).
(1)設(shè)c=0. ①若a=b,曲線y=f(x)在x=x0處的切線過點(1,0),求x0的值;
②若a>b,求f(x)在區(qū)間[0,1]上的最大值.
(2)設(shè)f(x)在x=x1 , x=x2兩處取得極值,求證:f(x1)=x1 , f(x2)=x2不同時成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸)、一位居民的月用水量不超過的部分按平價收費,超出的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5)[0.5,1),,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.

)求直方圖中a的值;

)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),并說明理由;

)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計的值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣(a+2)x+alnx,其中常數(shù)a>0.
(Ⅰ)當a>2時,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)定義在D上的函數(shù)y=h(x)在點P(x0 , h(x0))處的切線方程為l:y=g(x),若 >0在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“類對稱點”.當a=4時,試問y=f(x)是否存在“類對稱點”,若存在,請至少求出一個“類對稱點”的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是( 。
A.y=
B.y=﹣x+
C.y=﹣x|x|
D.y=

查看答案和解析>>

同步練習冊答案