【題目】已知函數(shù)f(x)=xe2x﹣lnx﹣ax.
(1)當(dāng)a=0時(shí),求函數(shù)f(x)在[ ,1]上的最小值;
(2)若x>0,不等式f(x)≥1恒成立,求a的取值范圍;
(3)若x>0,不等式f( )﹣1≥ e + 恒成立,求a的取值范圍.

【答案】
(1)解:a=0時(shí),f(x)=xe2x﹣lnx,

, ,

∴函數(shù)f′(x)在(0,+∞)上是增函數(shù),

又函數(shù)f′(x)的值域?yàn)镽,

x0>0,使得f′(x0)=(2x0+1)e =0,

又∵ ,∴ ,∴當(dāng)x∈[ ]時(shí),f′(x)>0,

即函數(shù)f(x)在區(qū)間[ ,1]上遞增,∴


(2)解:

由(1)知函數(shù)f′(x)在(0,+∞)上是增函數(shù),且x0>0,使得f′(x0)=0,

進(jìn)而函數(shù)f(x)在區(qū)間(0,x0)上遞減,在(x0,+∞)上遞增,

﹣lnx0﹣ax0,

由f′(x0)=0,得:(2x0+1)e ﹣a=0,

,∴f(x0)=1﹣lnx0﹣2x02 ,

x>0,不等式f(x)≥1恒成立,

∴1﹣lnx0﹣2x02e ≥1,∴l(xiāng)nx0+2x02 ≤0,

設(shè)h(x0)=lnx0+2x e ,則h(x0)為增函數(shù),且有唯一零點(diǎn),設(shè)為t,

則h(t)=lnt+2t2e2t=0,則﹣lnt=2t2e2t,即 ,

令g(x)=xex,則g(x)單調(diào)遞增,且g(2t)=g( ),

則2t=ln ,即 ,

∵a=(2x0+1) 在(0,t]為增函數(shù),

則當(dāng)x0=t時(shí),a有最大值, = ,

∴a≤2,∴a的取值范圍是(﹣∞,2]


(3)解:由f( )﹣1≥

,

∴xlnx﹣x﹣a≥ ,∴a 對(duì)任意x>0成立,

令函數(shù)g(x)=xlnx﹣x﹣ ,∴ ,

當(dāng)x>1時(shí),g′(x)>0,當(dāng)0<x<1時(shí),g′(x)<0,

∴當(dāng)x=1時(shí),函數(shù)g(x)取得最小值g(1)=﹣1﹣ =﹣1﹣

∴a≤﹣1﹣

∴a的取值范圍是(﹣∞,﹣1﹣


【解析】(1)a=0時(shí), , ,由此利用導(dǎo)數(shù)性質(zhì)能求出函數(shù)f(x)在[ ,1]上的最小值.(2) ,函數(shù)f(x)在區(qū)間(0,x0)上遞減,在(x0 , +∞)上遞增,由x>0,不等式f(x)≥1恒成立,得lnx0+2x02 ≤0,由此能求出a的取值范圍.(3)由f( )﹣1≥ ,得a 對(duì)任意x>0成立,令函數(shù)g(x)=xlnx﹣x﹣ ,則 ,由此利用導(dǎo)數(shù)性質(zhì)能求出a的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐平面,,,.

(1)求證:

(2)當(dāng)幾何體的體積等于時(shí),求四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率為,若橢圓與圓相交于M,N兩點(diǎn),且圓E在橢圓內(nèi)的弧長(zhǎng)為.

(1)求橢圓的方程;

(2)過(guò)橢圓的上焦點(diǎn)作兩條相互垂直的直線(xiàn),分別交橢圓于A,B、C,D,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某河流在一段時(shí)間x min內(nèi)流過(guò)的水量為y m3,yx的函數(shù),yf(x)=.

(1)當(dāng)x1變到8時(shí),y關(guān)于x的平均變化率是多少?它代表什么實(shí)際意義?

(2)f′(27)并解釋它的實(shí)際意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直三棱柱ABC﹣A1B1C1的底面為正三角形,E,F(xiàn)分別是A1C1 , B1C1上的點(diǎn),且滿(mǎn)足A1E=EC1 , B1F=3FC1

(1)求證:平面AEF⊥平面BB1C1C;
(2)設(shè)直三棱柱ABC﹣A1B1C1的棱長(zhǎng)均相等,求二面角C1﹣AE﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列有關(guān)命題的說(shuō)法正確的是(
A.命題“若xy=0,則x=0”的否命題為:“若xy=0,則x≠0”
B.“若x+y=0,則x,y互為相反數(shù)”的逆命題為真命題
C.命題“x∈R,使得2x2﹣1<0”的否定是:“x∈R,均有2x2﹣1<0”
D.命題“若cosx=cosy,則x=y”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿(mǎn)足 ,則使不等式a2016>2017成立的所有正整數(shù)a1的集合為(
A.{a1|a1≥2017,a1∈N+}
B.{a1|a1≥2016,a1∈N+}
C.{a1|a1≥2015,a1∈N+}
D.{a1|a1≥2014,a1∈N+}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: (a>b>0)的一個(gè)焦點(diǎn)與拋物線(xiàn) 的焦點(diǎn)相同,F(xiàn)1 , F2為橢圓的左、右焦點(diǎn).M為橢圓上任意一點(diǎn),△MF1F2面積的最大值為4

(1)求橢圓C的方程;
(2)設(shè)橢圓C上的任意一點(diǎn)N(x0 , y0),從原點(diǎn)O向圓N:(x﹣x02+(y﹣y02=3作兩條切線(xiàn),分別交橢圓于A,B兩點(diǎn).試探究|OA|2+|OB|2是否為定值,若是,求出其值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(0,0),B(4,3),若A,B,C三點(diǎn)按順時(shí)針?lè)较蚺帕袠?gòu)成等邊三角形ABC,且直線(xiàn)BC與x軸交于點(diǎn)D.
(1)求cos∠CAD的值;
(2)求點(diǎn)C的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案