設(shè)a>0且a≠1,則“函數(shù)f(x)=ax在x上是減函數(shù)”,是“函數(shù)g(x)=(2-a)x3在R上是增函數(shù)”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)函數(shù)的性質(zhì)結(jié)合充分條件和必要條件的定義即可得到結(jié)論.
解答: 解:若a>0且a≠1,則“函數(shù)f(x)=ax在x上是減函數(shù)”,則0<a<1,
若函數(shù)g(x)=(2-a)x3在R上是增函數(shù),則2-a>0,解得0<a<2,
故“函數(shù)f(x)=ax在x上是減函數(shù)”,是“函數(shù)g(x)=(2-a)x3在R上是增函數(shù)”的充分不必要條件,
故選:A
點評:本題主要考查充分條件和必要條件的判斷,根據(jù)函數(shù)的性質(zhì)求出等價條件是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x+φ),其中φ為實數(shù),若f(x)≤f(
π
6
),對x∈R恒成立,且f(
π
2
)<f(π),則f(x)的單調(diào)遞增區(qū)間是(  )
A、[kπ-
π
3
,kπ+
π
6
],k∈Z
B、[kπ,kπ+
π
2
],k∈Z
C、[kπ+
π
6
,kπ+
3
],k∈Z
D、[kπ-
π
2
,kπ],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,若正四棱柱ABCD-A1B1C1D1的底面邊長為2,高為4,則異面直線BD1與AD所成角的正弦值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點P(3,1)在橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右準(zhǔn)線上,過P點的方向向量為
a
=(-2,-5)的光線經(jīng)直線y=-2反射后通過橢圓的右焦點,則這個橢橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

11名工人中,有5人只能當(dāng)鉗工,4人只能當(dāng)車工,另外2人既能當(dāng)鉗工又能當(dāng)車工.先從11人中選出4人當(dāng)鉗工,4人當(dāng)車工,問有多少種不同的選法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若<
a
,
b
>=60°,|
b
|=4,(
a
+2
b
)•(
a
-3
b
)
=-72,則|
a
|=( 。
A、2B、4C、6D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(
x
+1)2-(x-1)5
展開式中x4的系數(shù)為(  )
A、-5B、15C、5D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,其右頂點和上頂點分別為AB原點到直線的距離為
2
5
5

(1)求橢圓方程;
(2)直線l:y=k(x+2)交橢圓于P,Q兩點,若點B始終在以PQ為直徑的圓內(nèi),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

7
10
5
8
,
9
11
8
10
21
25
15
19
若a>b>0,m>0,則
b+m
a+m
b
a
的關(guān)系(  )
A、相等B、前者大
C、后者大D、不確定

查看答案和解析>>

同步練習(xí)冊答案