分析 (1)a=$\frac{1}{2}$時(shí),f(x)=|log25(x+1)-$\frac{1}{2}$|+2,x∈[0,24],令|log25(x+1)-$\frac{1}{2}$|=0,解得x即可得出.
(2)令f(x)=|log25(x+1)-a|+2a+1=$\left\{\begin{array}{l}{3a+1-lo{g}_{25}(x+1),x∈(0,2{5}^{a}-1]}\\{lo{g}_{25}(x+1)+a+1,x∈(2{5}^{a}-1,24]}\end{array}\right.$,再利用函數(shù)的單調(diào)性即可得出.
解答 解:(1)a=$\frac{1}{2}$時(shí),f(x)=|log25(x+1)-$\frac{1}{2}$|+2,x∈[0,24],
令|log25(x+1)-$\frac{1}{2}$|=0,解得x=4,
因此:一天中第4個(gè)時(shí)刻該市的空氣污染指數(shù)最低.
(2)令f(x)=|log25(x+1)-a|+2a+1=$\left\{\begin{array}{l}{3a+1-lo{g}_{25}(x+1),x∈(0,2{5}^{a}-1]}\\{lo{g}_{25}(x+1)+a+1,x∈(2{5}^{a}-1,24]}\end{array}\right.$,
當(dāng)x∈(0,25a-1]時(shí),f(x)=3a+1-log25(x+1)單調(diào)遞減,∴f(x)<f(0)=3a+1.
當(dāng)x∈[25a-1,24)時(shí),f(x)=a+1+log25(x+1)單調(diào)遞增,∴f(x)≤f(24)=a+1+1.
聯(lián)立$\left\{\begin{array}{l}{3a+1≤3}\\{a+2≤3}\\{0<a<1}\end{array}\right.$,解得0<a≤$\frac{2}{3}$.
可得a∈$(0,\frac{2}{3}]$.
因此調(diào)節(jié)參數(shù)a應(yīng)控制在范圍$(0,\frac{2}{3}]$.
點(diǎn)評(píng) 本題考查了對(duì)數(shù)函數(shù)的單調(diào)性及其應(yīng)用,考查了分類討論方法、推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,2] | B. | [2,+∞) | C. | [2,$\frac{7}{2}$] | D. | [$\frac{7}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=x2-1 | B. | y=$\frac{2}{x}$ | C. | y=$\frac{1}{{x}^{2}}$ | D. | y=-x3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=$\frac{1}{{x}^{2}}$ | B. | f(x)=x2+1 | C. | f(x)=x | D. | f(x)=2x |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com