15.已知拋物線C:y2=-2x的焦點(diǎn)為F,點(diǎn)A(x0,y0)是C上一點(diǎn),若|AF|=$\frac{3}{2}$,則x0=(  )
A.2B.1C.-1D.-2

分析 根據(jù)拋物線的定義可知該點(diǎn)到準(zhǔn)線的距離與其到焦點(diǎn)的距離相等,進(jìn)而利用點(diǎn)到直線的距離求得x0的值.

解答 解:根據(jù)拋物線定義可知$\frac{1}{2}$-x0=$\frac{3}{2}$,解得x0=-1,
故選:C.

點(diǎn)評(píng) 本題主要考查了拋物線的簡(jiǎn)單性質(zhì).在涉及焦點(diǎn)弦和關(guān)于焦點(diǎn)的問題時(shí)常用拋物線的定義來解決.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知拋物線C1:y2=4x的焦點(diǎn)F也是橢圓${C_2}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的一個(gè)焦點(diǎn),C1與C2的公共弦長(zhǎng)為$2\sqrt{6}$,過點(diǎn)F的直線l與C1相交于A,B兩點(diǎn),與C2相交于C,D兩點(diǎn),且$\overrightarrow{AC}$與$\overrightarrow{BD}$同向.
(1)求C2的方程;
(2)若|AC|=|BD|,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.袋中裝有大小完全相同,標(biāo)號(hào)分別為1,2,3,…,9的九個(gè)球,現(xiàn)從袋中隨機(jī)取出3個(gè)球,設(shè)ξ為這3個(gè)球的標(biāo)號(hào)相鄰的組數(shù)(例如:若取出球的標(biāo)號(hào)為3,4,5,則有兩組相鄰的標(biāo)號(hào)3,4和4,5,此時(shí)ξ的值是2),則隨機(jī)變量ξ的均值E(ξ)為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,b=3,c=3,B=30°,則a的值為(  )
A.3B.23C.3$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若拋物線y2=2mx的準(zhǔn)線方程為x=-3,則實(shí)數(shù)m的值為( 。
A.-6B.-$\frac{1}{6}$C.$\frac{1}{6}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知雙曲線$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{3}$=1的左右焦點(diǎn)分別為F1,F(xiàn)2,過F1的直線與左支相交于A,B兩點(diǎn),如果|AF2|+|BF2|=2|AB|,則|AB|=$4\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.由經(jīng)驗(yàn)得知,在學(xué)校食堂某窗口處排隊(duì)等候打飯的人數(shù)及其概率如下:
排隊(duì)人數(shù)012345人以上
概率0.10.160.30.30.10.04
則至多2個(gè)人排隊(duì)的概率為( 。
A.0.56B.0.44C.0.26D.0.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)y=2sin(ωx+$\frac{π}{6}$)(ω>0)的最小正周期為$\frac{2π}{3}$,則ω=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.不等式|2x-1|+|2x+9|>10的解集為$\{x|x<-\frac{9}{2}或x>\frac{1}{2}\}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案