精英家教網 > 高中數學 > 題目詳情
已知雙曲線的兩個焦點為在雙曲線C上.
(1)求雙曲線C的方程;
(2)記O為坐標原點,過點Q (0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為求直線l的方程.
(1) ;(2) 直線的方程為

試題分析:(1)由焦點坐標可得,所以,點在雙曲線,滿足雙曲線方程,可得,兩式聯立解得,可得雙曲線方程;(2) 直線的斜率存在,可設直線的方程為,與雙曲線方程聯立,可設,由根與系數的關系得,,又,得關于的方程,解得,可得直線方程.
解:(1)由已知及點在雙曲線上得
     解得
所以,雙曲線的方程為
(2)由題意直線的斜率存在,故設直線的方程為
 得
設直線與雙曲線交于、,則、是上方程的兩不等實根,
     ①
這時

       
所以     即

      適合①式
所以,直線的方程為
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分13分)
已知雙曲線的兩條漸近線分別為.

(1)求雙曲線的離心率;
(2)如圖,為坐標原點,動直線分別交直線兩點(分別在第一,四象限),且的面積恒為8,試探究:是否存在總與直線有且只有一個公共點的雙曲線?若存在,求出雙曲線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

等軸雙曲線C的中心在原點,焦點在x軸上,C與拋物線y2=16x的準線交于A,B兩點,|AB|=4,則C的實軸長為(  )
A.B.2C.4D.8

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

[2012·課標全國卷]等軸雙曲線C的中心在原點,焦點在x軸上,C與拋物線y2=16x的準線交于A,B兩點,|AB|=4,則C的實軸長為(  )
A.B.2C.4D.8

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

[2013·北京高考]雙曲線x2=1的離心率大于的充分必要條件是(  )
A.m>B.m≥1C.m>1D.m>2

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

(5分)(2011•天津)已知雙曲線=1(a>0,b>0)的左頂點與拋物線y2=2px的焦點的距離為4,且雙曲線的一條漸近線與拋物線的準線的交點坐標為(﹣2,﹣1),則雙曲線的焦距為(         )
A.2B.2C.4D.4

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知雙曲線的實軸長為2,則該雙曲線的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(2014·武漢模擬)已知點P是圓M:x2+(y+m)2=8(m>0,m≠)上一動點,點N(0,m)是圓M所在平面內一定點,線段NP的垂直平分線l與直線MP相交于點Q.
(1)當P在圓M上運動時,記動點Q的軌跡為曲線Г,判斷曲線Г為何種曲線,并求出它的標準方程.
(2)過原點斜率為k的直線交曲線Г于A,B兩點,其中A在第一象限,且它在x軸上的射影為點C,直線BC交曲線Г于另一點D,記直線AD的斜率為k′,是否存在m,使得對任意的k>0,都有|k·k′|=1?若存在,求m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

拋物線y2=4x的焦點到雙曲線的漸近線的距離是(  )
A.B.C.1D.

查看答案和解析>>

同步練習冊答案