已知,,.
(1)當(dāng)時,求的單調(diào)區(qū)間;w.w.w.k.s.5.u.c.o.m
(2)求在點處的切線與直線及曲線所圍成的封閉圖形的面積;
(3)是否存在實數(shù),使的極大值為3?若存在,求出的值;若不存在,請說明理由.
解析:(1)當(dāng).………1分
……………………3分
∴的單調(diào)遞增區(qū)間為(0,1),單調(diào)遞減區(qū)間為:,…………4分
(2)切線的斜率為, ∴ 切線方程為.……………6分
所求封閉圖形面積為
. …………8分
(3), ………………………9分
令. ………………………………………………………10分
列表如下:
x | (-∞,0) | 0 | (0,2-a) | 2-a | (2-a,+ ∞) |
- | 0 | + | 0 | - | |
極小 | 極大 |
由表可知,. ………………12分
設(shè),
∴上是增函數(shù),………………………………13分
∴,即,w.w.w.k.s.5.u.c.o.m
∴不存在實數(shù),使極大值為3. …………………14分
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù).()
(1)當(dāng)時,求在區(qū)間[1,e]上的最大值和最小值;
(2)若在區(qū)間(1,+∞)上,函數(shù)的圖象恒在直線下方,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆陜西省渭南市高二下期末考試文科數(shù)學(xué)卷(解析版) 題型:解答題
已知集合,集合B=
(1)當(dāng)時,求;(2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆浙江省高二第二學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題10分)
已知(),
(1)當(dāng)時,求的值;
(2)設(shè),試用數(shù)學(xué)歸納法證明:
當(dāng)時, 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省高三上學(xué)期期末理科數(shù)學(xué)試卷 題型:解答題
已知函數(shù)其中常數(shù)
(1)當(dāng)時,求函數(shù)的單調(diào)遞增區(qū)間;
(2)當(dāng)時,給出兩類直線:與,其中為常數(shù),判斷這兩類直線中是否存在的切線,若存在,求出相應(yīng)的或的值,若不存在,說明理由.
(3)設(shè)定義在上的函數(shù)在點處的切線方程為,當(dāng)若在內(nèi)恒成立,則稱為函數(shù)的“類對稱點”,當(dāng)時,試問是否存在“類對稱點”,若存在,請至少求出一個“類對稱點”的橫坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市高三第三次月考試題文科數(shù)學(xué) 題型:解答題
. (本題滿分14分,第1小題滿分6分,第2小題滿分8分)
已知向量,,
(1)當(dāng)時,求的值;
(2)求的最大值與最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com