【題目】在四棱錐中,為正三角形,平面平面,,.

1)求證:平面平面;

2)求三棱錐的體積;

3)在棱上是否存在點,使得平面?若存在,請確定點的位置并證明;若不存在,說明理由.

【答案】見解析

【解析】(1)因為,所以.

因為平面平面,平面平面,所以平面.2分)

因為平面,所以平面平面.4分)

2)如圖,取的中點,連接.

因為為正三角形,所以.

因為平面平面,平面平面,所以平面,所以為三棱錐的高.6分)

因為為正三角形,,所以.

所以.8分)

3)在棱上存在點,當的中點時,平面.9分)

如圖,分別取的中點,連接,所以.

因為,所以,所以四邊形為平行四邊形,所以.

因為,所以平面平面.11分)

因為平面,所以平面.12分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=a﹣(a∈R)

(Ⅰ)判斷函數(shù)f(x)在R上的單調(diào)性,并用單調(diào)函數(shù)的定義證明;

(Ⅱ)是否存在實數(shù)a使函數(shù)f(x)為奇函數(shù)?若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是直角梯形,,,是兩個邊長為2的正三角形,

(1)求證:平面⊥平面;

(2)求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,

(1)如果函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的解析式;

(2)在(1)的條件下,求函數(shù)的圖象在點處的切線方程;

(3)已知不等式恒成立,若方程恰有兩個不等實根,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義區(qū)間(a,b)[a,b),(a,b],[a,b]的長度均為,多個區(qū)間并集的長度為各區(qū)間長度之和,例如,(1,2) [3,5)的長度d=(2-1)+(5-3)=3. [x]表示不超過x的最大整數(shù),記{x}=x-[x],其中.設(shè), ,當,不等式解集區(qū)間的長度為,則的值為_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系,直線的方程為,曲線的參數(shù)方程為為參數(shù)).

(1)已知在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,軸正半軸為極軸)中,點的極坐標為,判斷點與曲線的位置關(guān)系

(2)設(shè)點是曲線上的一個動點,求它到直線的距離的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐A-BCD,△ABC是等腰直角三角形,ACBC,BC=2,AD平面BCD,AD=1.

(1)求證:平面ABC平面ACD;

(2)EAB中點,求點A到平面CED的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)討論的單調(diào)性;

(Ⅱ)對于任意,任意,總有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】社會公眾人物的言行一定程度上影響著年輕人的人生觀、價值觀.某媒體機構(gòu)為了解大學(xué)生對影視、歌星以及著名主持人方面的新聞(簡稱:“星聞”)的關(guān)注情況,隨機調(diào)查了某大學(xué)的位大學(xué)生,得到信息如下表:

(Ⅰ)從所抽取的人內(nèi)關(guān)注“星聞”的大學(xué)生中,再抽取三人做進一步調(diào)查,求這三人性別不全相同的概率;

(Ⅱ)是否有以上的把握認為“關(guān)注‘星聞’與性別有關(guān)”,并說明理由;

(Ⅲ)把以上的頻率視為概率,若從該大學(xué)隨機抽取位男大學(xué)生,設(shè)這人中關(guān)注“星聞”的人數(shù)為,求的分布列及數(shù)學(xué)期望.

附: .

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步練習(xí)冊答案