【題目】用斜二測畫法作出邊長為3cm、高4cm的矩形的直觀圖.
【答案】解:(1)在已知ABCD中取AB、AD所在邊為X軸與Y軸,相交于O點(diǎn)(O與A重合),
畫對應(yīng)
X′軸,Y′軸使∠X′O′Y′=45°
(2)在X′軸上取A′,B′使A′B′=AB,在Y′軸上取D′,
使A′D′=AD,過D′作D′C′平行X′的直線,且等于A′D′長.
(3)連C′B′所得四邊形A′B′C′D′就是矩形ABCD的直觀圖.
【解析】用統(tǒng)一的畫圖標(biāo)準(zhǔn):斜二測畫法,即在已知圖形所在的空間中取水平平面,作X′軸,Y′軸使∠X′O′Y′=45°,然后依據(jù)平行投影的有關(guān)性質(zhì)逐一作圖.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解平面圖形的直觀圖(要畫好對應(yīng)平面圖形的直觀圖,首先應(yīng)在原圖形中確定直角坐標(biāo)系,然后在此基礎(chǔ)上畫出水平放置的平面坐標(biāo)系).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線經(jīng)過點(diǎn)M( ).
(1)如果此雙曲線的漸近線為 ,求雙曲線的標(biāo)準(zhǔn)方程;
(2)如果此雙曲線的離心率e=2,求雙曲線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】劉徽是我國魏晉時(shí)期著名的數(shù)學(xué)家,他編著的《海島算經(jīng)》中有一問題:“今有望海島,立兩表齊,高三丈,前后相去千步,令后表與前表相直。從前表卻行一百二十三步,人目著地取望島峰,與表末參合。從后表卻行百二十七步,人目著地取望島峰,亦與表末參合。問島高幾何?” 意思是:為了測量海島高度,立了兩根表,高均為5步,前后相距1000步,令后表與前表在同一直線上,從前表退行123步,人恰觀測到島峰,從后表退行127步,也恰觀測到島峰,則島峰的高度為( )(注:3丈=5步,1里=300步)
A. 4里55步 B. 3里125步 C. 7里125步 D. 6里55步
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方形的邊長為2, 是的中點(diǎn),以點(diǎn)為圓心, 長為半徑作圓,點(diǎn)是該圓上的任一點(diǎn),則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知⊙C過點(diǎn)P(1,1),且與⊙M:(x+2)2+(y+2)2=r2(r>0)關(guān)于直線x+y+2=0對稱.
(1)求⊙C的方程;
(2)設(shè)Q為⊙C上的一個(gè)動(dòng)點(diǎn),求 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.有兩個(gè)面平行,其余各面都是四邊形的幾何體叫棱柱.
B.有兩個(gè)面平行,其余各面都是平行四邊形的幾何體叫棱柱.
C.有一個(gè)面是多邊形,其余各面都是三角形的幾何體叫棱錐.
D.棱臺(tái)各側(cè)棱的延長線交于一點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于下列命題:
①函數(shù)y=tanx的一個(gè)對稱中心是( ,0);
②函數(shù)y=cos2( ﹣x)是偶函數(shù);
③函數(shù)y=4sin(2x﹣ )的一條對稱軸是x=﹣ ;
④函數(shù)y=sin(x+ )在閉區(qū)間[﹣ , ]上是增函數(shù).
寫出所有正確的命題的題號 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com