【題目】用斜二測畫法作出邊長為3cm、高4cm的矩形的直觀圖.

【答案】解:(1)在已知ABCD中取AB、AD所在邊為X軸與Y軸,相交于O點(O與A重合),
畫對應
X′軸,Y′軸使∠X′O′Y′=45°
(2)在X′軸上取A′,B′使A′B′=AB,在Y′軸上取D′,
使A′D′=AD,過D′作D′C′平行X′的直線,且等于A′D′長.
(3)連C′B′所得四邊形A′B′C′D′就是矩形ABCD的直觀圖.

【解析】用統(tǒng)一的畫圖標準:斜二測畫法,即在已知圖形所在的空間中取水平平面,作X′軸,Y′軸使∠X′O′Y′=45°,然后依據(jù)平行投影的有關性質(zhì)逐一作圖.
【考點精析】認真審題,首先需要了解平面圖形的直觀圖(要畫好對應平面圖形的直觀圖,首先應在原圖形中確定直角坐標系,然后在此基礎上畫出水平放置的平面坐標系).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線經(jīng)過點M( ).
(1)如果此雙曲線的漸近線為 ,求雙曲線的標準方程;
(2)如果此雙曲線的離心率e=2,求雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c且滿足csinA=acosC
(1)求角C的大小;
(2)求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】劉徽是我國魏晉時期著名的數(shù)學家,他編著的《海島算經(jīng)》中有一問題:“今有望海島,立兩表齊,高三丈,前后相去千步,令后表與前表相直。從前表卻行一百二十三步,人目著地取望島峰,與表末參合。從后表卻行百二十七步,人目著地取望島峰,亦與表末參合。問島高幾何?” 意思是:為了測量海島高度,立了兩根表,高均為5步,前后相距1000步,令后表與前表在同一直線上,從前表退行123步,人恰觀測到島峰,從后表退行127步,也恰觀測到島峰,則島峰的高度為( )(注:3丈=5步,1里=300步)

A. 4里55步 B. 3里125步 C. 7里125步 D. 6里55步

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正方形的邊長為2, 的中點,以點為圓心, 長為半徑作圓,點是該圓上的任一點,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知⊙C過點P(1,1),且與⊙M:(x+2)2+(y+2)2=r2(r>0)關于直線x+y+2=0對稱.
(1)求⊙C的方程;
(2)設Q為⊙C上的一個動點,求 的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是( )
A.有兩個面平行,其余各面都是四邊形的幾何體叫棱柱.
B.有兩個面平行,其余各面都是平行四邊形的幾何體叫棱柱.
C.有一個面是多邊形,其余各面都是三角形的幾何體叫棱錐.
D.棱臺各側棱的延長線交于一點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于下列命題:
①函數(shù)y=tanx的一個對稱中心是( ,0);
②函數(shù)y=cos2( ﹣x)是偶函數(shù);
③函數(shù)y=4sin(2x﹣ )的一條對稱軸是x=﹣ ;
④函數(shù)y=sin(x+ )在閉區(qū)間[﹣ , ]上是增函數(shù).
寫出所有正確的命題的題號

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面向量 , , 兩兩所成角相等,且| |=1,| |=2,| |=3,則| + + |為

查看答案和解析>>

同步練習冊答案