【題目】在平面直角坐標系中,直線的參數(shù)方程為 (其中為參數(shù),).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為截得的弦長為.

1)求實數(shù)的值;

2)設(shè)交于點,若點的坐標為,求的值.

【答案】13;(2

【解析】

1)直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程極坐標方程和直角坐標方程之間進行轉(zhuǎn)換,進一步利用垂徑定理和點到直線的距離公式的應用求出結(jié)果.

2)利用一元二次方程根和系數(shù)關(guān)系式的應用求出結(jié)果.

1)直線的參數(shù)方程為 (其中為參數(shù),).轉(zhuǎn)換為直角坐標方程為:.

曲線的極坐標方程為,轉(zhuǎn)換為直角坐標方程為,

由于截得的弦長為.

所以:利用垂徑定理圓心到直線的距離,

解得.

2)直線的參數(shù)方程,轉(zhuǎn)換為標準式為 (為參數(shù)),

代入得到:

所以,,

所以:.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】從秦朝統(tǒng)一全國幣制到清朝末年,圓形方孔銅錢(簡稱孔方兄是我國使用時間長達兩千多年的貨幣.如圖1,這是一枚清朝同治年間的銅錢,其邊框是由大小不等的兩同心圓圍成的,內(nèi)嵌正方形孔的中心與同心圓圓心重合,正方形外部,圓框內(nèi)部刻有四個字同治重寶.某模具廠計劃仿制這樣的銅錢作為紀念品,其小圓內(nèi)部圖紙設(shè)計如圖2所示,小圓直徑1厘米,內(nèi)嵌一個大正方形孔,四周是四個全等的小正方形(邊長比孔的邊長。總正方形有兩個頂點在圓周上,另兩個頂點在孔邊上,四個小正方形內(nèi)用于刻銅錢上的字.設(shè),五個正方形的面積和為

1)求面積關(guān)于的函數(shù)表達式,并求的范圍;

2)求面積最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某部隊在一次軍演中要先后執(zhí)行六項不同的任務(wù),要求是:任務(wù)A必須排在前三項執(zhí)行,且執(zhí)行任務(wù)A之后需立即執(zhí)行任務(wù)E,任務(wù)B、任務(wù)C不能相鄰,則不同的執(zhí)行方案共有( )

A. 36種B. 44種C. 48種D. 54種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論的單調(diào)性;

2)設(shè),若函數(shù)的兩個極值點恰為函數(shù)的兩個零點,且的范圍是,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐的底面中,,,平面,的中點,且

(Ⅰ)求證:平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)線段上是否存在點,使得,若存在指出點的位置,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關(guān)于曲線,給出下列三個結(jié)論:

曲線關(guān)于原點對稱,但不關(guān)于軸、軸對稱;

曲線恰好經(jīng)過4個整點(即橫、縱坐標均為整數(shù)的點);

曲線上任意一點到原點的距離都不大于.

其中,正確結(jié)論的序號是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中不正確的是( 。

A.設(shè)為直線,為平面,且;則的充要條件

B.設(shè)隨機變量,若,則

C.若不等式()恒成立,則的取值范圍是

D.已知直線經(jīng)過點,則的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雷達圖(Radar Chart),又可稱為戴布拉圖、蜘蛛網(wǎng)圖(Spider Chart),原先是財務(wù)分析報表的一種,現(xiàn)可用于對研究對象的多維分析.圖為甲、乙兩人在五個方面的評價值的雷達圖,則下列說法不正確的是(

A.甲、乙兩人在次要能力方面的表現(xiàn)基本相同

B.甲在溝通、服務(wù)、銷售三個方面的表現(xiàn)優(yōu)于乙

C.在培訓與銷售兩個方面上,甲的綜合表現(xiàn)優(yōu)于乙

D.甲在這五個方面的綜合表現(xiàn)優(yōu)于乙

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線上的點到點的距離比到直線的距離小.

(1)求曲線的方程;

(2)設(shè)為曲線上任意一點,點,問是否存在垂直于軸的直線,使得被以為直徑的圓是的弦長恒為定值?若存在,求出的方程和定值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案