【題目】已知曲線上的點到點的距離比到直線的距離小.
(1)求曲線的方程;
(2)設為曲線上任意一點,點,問是否存在垂直于軸的直線,使得被以為直徑的圓是的弦長恒為定值?若存在,求出的方程和定值;若不存在,說明理由.
【答案】(1);(2)存在,直線的方程為,定值為
【解析】
(1)根據(jù)題意可知,曲線上的點到點的距離與到直線的距離相等,結合拋物線的定義,即可得到答案;
(2) 設直線方程為,,直線與以為直徑的圓的交點為,,因為直線垂直于軸,故弦長為,因此根據(jù)圓的直徑式方程寫出以為直徑的圓的方程將代入,利用根與系數(shù)關系求出,代入弦長,可求得,令即可得到答案.
(1)依題意得,曲線上的點到點的距離與到直線的距離相等.
所以曲線的方程為:.
(2)假設滿足條件的直線存在,其方程為,,
則以為直徑的圓的方程為,
將直線方程代入,得,
則.
設直線與以為直徑的圓的交點為,,
則,,
于是有.
當,即時,為定值.
故滿足條件的直線存在,其方程為.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為 (其中為參數(shù),).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,被截得的弦長為.
(1)求實數(shù)的值;
(2)設與交于點,,若點的坐標為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出如下四個命題:
①若“或”為假命題,則均為假命題;
②命題“若且,則”的否命題為“若且,則”;
③若是實數(shù),則“”是“”的必要不充分條件;
④命題“若則”的逆否命題為真命題.
其中正確命題的個數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,平面平面ABCD,,,底面ABCD是邊長為2的菱形,點E,F分別為棱DC,BC的中點,點G是棱SC靠近點C的四等分點.
求證:(1)直線平面EFG;
(2)直線平面SDB.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
設函數(shù)
(Ⅰ)若是函數(shù)的極值點,1和是的兩個不同零點,且
且,求的值;
(Ⅱ)若對任意, 都存在( 為自然對數(shù)的底數(shù)),使得
成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場舉行優(yōu)惠促銷活動,顧客僅可以從以下兩種優(yōu)惠方案中選擇一種.
方案一:每滿100元減20元;
方案二:滿100元可抽獎一次.具體規(guī)則是從裝有2個紅球、2個白球的箱子隨機取出3個球(逐個有放回地抽。媒Y果和享受的優(yōu)惠如下表:(注:所有小球僅顏色有區(qū)別)
紅球個數(shù) | 3 | 2 | 1 | 0 |
實際付款 | 7折 | 8折 | 9折 | 原價 |
(1)該商場某顧客購物金額超過100元,若該顧客選擇方案二,求該顧客獲得7折或8折優(yōu)惠的概率;
(2)若某顧客購物金額為180元,選擇哪種方案更劃算?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近幾年,我國鮮切花產(chǎn)業(yè)得到了快速發(fā)展,相關部門制定了鮮切花產(chǎn)品行業(yè)等級標準,統(tǒng)一使用綜合指標值進行衡量,如下表所示.某花卉生產(chǎn)基地準備購進一套新型的生產(chǎn)線,現(xiàn)進行設備試用,分別從新舊兩條生產(chǎn)線加工的產(chǎn)品中選取30個樣品進行等級評定,整理成如圖所示的莖葉圖.
綜合指標 | |||
質(zhì)量等級 | 三級 | 二級 | 一級 |
(Ⅰ)根據(jù)莖葉圖比較兩條生產(chǎn)線加工的產(chǎn)品的綜合指標值的平均值及分散程度(直接給出結論即可);
(Ⅱ)若從等級為三級的樣品中隨機選取3個進行生產(chǎn)流程調(diào)查,其中來自新型生產(chǎn)線的樣品個數(shù)為,求的分布列;
(Ⅲ)根據(jù)該花卉生產(chǎn)基地的生產(chǎn)記錄,原有生產(chǎn)線加工的產(chǎn)品的單件平均利潤為4元,產(chǎn)品的銷售率(某等級產(chǎn)品的銷量與產(chǎn)量的比值)及產(chǎn)品售價如下表:
三級花 | 二級花 | 一級花 | |
銷售率 | |||
單件售價 | 12元 | 16元 | 20元 |
預計該新型生產(chǎn)線加工的鮮切花單件產(chǎn)品的成本為span>10元,日產(chǎn)量3000件.因為鮮切花產(chǎn)品的保鮮特點,未售出的產(chǎn)品統(tǒng)一按原售價的50%全部處理完.如果僅從單件產(chǎn)品利潤的角度考慮,該生產(chǎn)基地是否需要引進該新型生產(chǎn)線?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,焦距為2,離心率為.
(1)求橢圓的標準方程;
(2)過點作圓的切線,切點分別為,直線與軸交于點,過點的直線交橢圓于兩點,點關于軸的對稱點為,求的面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com