2.方程${x^2}+{y^2}+ax-2ay+a+\frac{1}{4}=0$為圓的方程,則a的范圍為$(-∞,-\frac{1}{5})∪(1,+∞)$.

分析 利用二元二次方程表示圓的充要條件,列出方程求解即可.

解答 解:方程${x^2}+{y^2}+ax-2ay+a+\frac{1}{4}=0$為圓的方程,
則:a2+(-2a)2-4(a+$\frac{1}{4}$)>0,即5a2-4a-1>0,
解得a∈$(-∞,-\frac{1}{5})∪(1,+∞)$
故答案為:$(-∞,-\frac{1}{5})∪(1,+∞)$.

點評 本題考查圓的方程的應用,二元二次方程表示圓的體積的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

12.已知函數(shù)f(x)=3x3+ax+1(a為常數(shù))f(5)=7,則f(-5)=-5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.集合A={x|x2-3x-10≤0},集合B={x|m+1≤x≤2m-1}.
(1)若B⊆A,求實數(shù)m的取值范圍;
(2)當x∈R時,沒有元素x使x∈A與x∈B同時成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.不等式(x-a)(ax-1)<0的解集是$(-∞,\frac{1}{a})∪(a,+∞)$,則實數(shù)a的取值范圍是[-1,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.隨機抽取某中學甲乙兩班各10名同學,測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖示,根據(jù)莖葉圖解答下列問題;
(1)計算甲班與乙班的身高數(shù)據(jù)的中位數(shù).
(2)判斷哪個班的平均身高較高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.先將函數(shù)y=ln$\frac{1}{3-x}$的圖象向右平移3個單位,再將所得圖象關于原點對稱得到y(tǒng)=f(x)的圖象,則y=f(x)的解析式是f(x)=lnx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,其中左焦點F(-2,0).
(1)求橢圓C的方程;
(2)若直線y=x+m與橢圓C交于不同的兩點A,B,且線段AB的中點M關于直線y=x+1的對稱點在圓x2+y2=1上,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.(1)將關于x的不等式|x-3|+|x-4|<2;
(2)如果關于x的不等式|x-3|+|x-4|<a的解集是空集,求實數(shù)a的取值范圍;
(3)對任意x∈R,|2-x|+|3+x|≥a2-4a恒成立,求a的取值范圍;
(4)已知m∈R,解關于x的不等式1-x≤|x-m|≤1+x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.直線ax+4y-a=0與直線6x+8y+5=0平行,則這兩直線間的距離為1.1.

查看答案和解析>>

同步練習冊答案