【題目】ABC的三個角A,B,C所對的邊分別是a,b,c,向量=(2,-1),=(sinBsinC,+2cosBcosC),且⊥.
(1)求角A的大。
(2)現(xiàn)給出以下三個條件:①B=45;②2sinC-(+1)sinB=0;③a=2.試從中再選擇兩個條件以確定ABC,并求出所確定的ABC的面積.
【答案】⑴ ;⑵選擇①,③ S△ABC=+1 ;選擇②,③ S△ABC=+1; 選擇①,②不能確定三角形
【解析】
(1)由⊥,可得,得cosA=,即可得出;
(2)選擇①,③或選擇②,③.利用正弦定理與余弦定理、三角形的面積計算公式即可得出.選擇①,②不能確定三角形.
(1)∵⊥,∴=2sinBsinC﹣2cosBcosC﹣=0,∴cos(B+C)=﹣,
∴cosA=,又0°<A<180°,∴A=30°.
(2)選擇①,③.∵A═30°,B=45°,C=105°,a=2,且sin105°=sin(45°+60°)=,
c==
,∴S△ABC=acsinB=+1.
選擇②,③.∵A=30°,a=2,∴2sinC=(+1)sinB2c=(+1)b,
由余弦定理:a2=4=b2+ b2=8 b=2.
c=,∴S△ABC=+1.
選①,②不能確定三角形.
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.點(2,0)關于直線y=x+1的對稱點為(﹣1,3)
B.過(x1,y1),(x2,y2)兩點的直線方程為
C.經過點(1,1)且在x軸和y軸上截距都相等的直線方程為x+y﹣2=0或x﹣y=0
D.直線x﹣y﹣4=0與兩坐標軸圍成的三角形的面積是8
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在軸上,離心率等于,它的一個頂點恰好在拋物線的準線上.
求橢圓的標準方程;
點,在橢圓上,是橢圓上位于直線兩側的動點當運動時,滿足,試問直線的斜率是否為定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐S﹣ABCD中,底面ABCD是邊長為4的菱形,∠BAD=60°,SA=SD=2,點E是棱AD的中點,點F在棱SC上,且λ,SA//平面BEF.
(1)求實數(shù)λ的值;
(2)求三棱錐F﹣EBC的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知分別為橢圓右頂點和上頂點,且直線的斜率為,右焦點到直線的距離為.
求橢圓的方程;
若直線 與橢圓交于兩點,且直線的斜率之和為1,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“我將來要當一名麥田里的守望者,有那么一群孩子在一塊麥田里玩,幾千萬的小孩子,附近沒有一個大人,我是說……除了我”《麥田里的守望者》中的主人公霍爾頓將自己的精神生活寄托于那廣闊無垠的麥田.假設霍爾頓在一塊成凸四邊形的麥田里成為守望者,如圖所示,為了分割麥田,他將連接,設中邊所對的角為,中邊所對的角為,經測量已知,.
(1)霍爾頓發(fā)現(xiàn)無論多長,為一個定值,請你驗證霍爾頓的結論,并求出這個定值;
(2)霍爾頓發(fā)現(xiàn)麥田的生長于土地面積的平方呈正相關,記與的面積分別為和,為了更好地規(guī)劃麥田,請你幫助霍爾頓求出的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱中,平面,,,以,為鄰邊作平行四邊形,連接,,若二面角為45°.
(1)求證:平面⊥平面;
(2)求直線與平面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義域為的奇函數(shù).
(1)求實數(shù)的值;
(2)若,不等式在上恒成立,求實數(shù)的取值范圍;
(3)若且 上最小值為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com