【題目】函數(shù)f(x)=lg(2sinx﹣1)的定義域為 .
【答案】( +2kπ, +2kπ),k∈Z
【解析】解:∵函數(shù)f(x)=lg(2sinx﹣1),
∴2sinx﹣1>0,
∴sinx> ,
解得 +2kπ<x< +2kπ,k∈Z;
∴函數(shù)f(x)的定義域為( +2kπ, +2kπ),k∈Z.
所以答案是:( +2kπ, +2kπ),k∈Z.
【考點精析】根據(jù)題目的已知條件,利用函數(shù)的定義域及其求法的相關(guān)知識可以得到問題的答案,需要掌握求函數(shù)的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數(shù);②是分式函數(shù)時,定義域是使分母不為零的一切實數(shù);③是偶次根式時,定義域是使被開方式為非負值時的實數(shù)的集合;④對數(shù)函數(shù)的真數(shù)大于零,當對數(shù)或指數(shù)函數(shù)的底數(shù)中含變量時,底數(shù)須大于零且不等于1,零(負)指數(shù)冪的底數(shù)不能為零.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y2=4x的焦點為F.過點P(2,0)的直線交拋物線于A(x1 , y1),B(x2 , y2)兩點,直線AF,BF分別與拋物線交于點M,N.
(1)求y1y2的值;
(2)記直線MN的斜率為k1 , 直線AB的斜率為k2 . 證明: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是的一個極值點.
(1)若是的唯一極值點,求實數(shù)的取值范圍;
(2)討論的單調(diào)性;
(3)若存在正數(shù),使得,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=1﹣ (x∈R),
(1)求反函數(shù)f﹣1(x);
(2)解不等式f﹣1(x)>log2(1+x)+1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
(1)當, 恒成立,求實數(shù)的取值范圍.
(2)設(shè)在上有兩個極值點.
(A)求實數(shù)的取值范圍;
(B)求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)當時,求函數(shù) 的極小值;
(2)若函數(shù)在上為增函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0,集合A={x|ax2﹣2x+2a﹣1=0},B={y|y=log2(x+ ﹣4)},p:A=,q:B=R.
(1)若p∧q為真,求a的最大值;
(2)若p∧q為為假,p∨q為真,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等比數(shù)列{an}中,公比q≠1,等差數(shù)列{bn}滿足a1=b1=3,a2=b4 , a3=b13 .
(1)求數(shù)列{an}的{bn}通項公式;
(2)記cn=anbn , 求數(shù)列{cn}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)準備投入適當?shù)膹V告費對產(chǎn)品進行促銷,在一年內(nèi)預(yù)計銷售Q(萬件)與廣告費x(萬元)之間的函數(shù)關(guān)系為Q= (x≥0).已知生產(chǎn)此產(chǎn)品的年固定投入為3萬元,每生產(chǎn)1萬元此產(chǎn)品仍需再投入32萬元,若每件銷售價為“平均每件生產(chǎn)成本的150%”與“年平均每件所占廣告費的50%”之和.
(1)試將年利潤W(萬元)表示為年廣告費x(萬元)的函數(shù);
(2)當年廣告費投入多少萬元時,企業(yè)年利潤最大?最大利潤為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com