20.已知數(shù)列{an}:a1=1,${a_{n+1}}=2{a_n}+3,({n∈{N^+}})$,則an=(  )
A.2n+1-3B.2n-1C.2n+1D.2n+2-7

分析 由已知數(shù)列遞推式可得數(shù)列{an+3}是以4為首項(xiàng),以2為公比的等比數(shù)列,再由等比數(shù)列的通項(xiàng)公式得答案.

解答 解:由${a_{n+1}}=2{a_n}+3,({n∈{N^+}})$,
得an+1+3=2(an+3),
∵a1+3=4≠0,
∴數(shù)列{an+3}是以4為首項(xiàng),以2為公比的等比數(shù)列,
則${a}_{n}+3=4×{2}^{n-1}={2}^{n+1}$,
∴${a}_{n}={2}^{n+1}-3$.
故選:A.

點(diǎn)評(píng) 本題考查數(shù)列遞推式,考查了等比關(guān)系的確定,訓(xùn)練了等比數(shù)列通項(xiàng)公式的求法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若圓錐底面半徑為2,高為$\sqrt{5}$,則其側(cè)面積為6π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.經(jīng)過(guò)探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱中心,且“拐點(diǎn)”就是對(duì)稱中心.設(shè)函數(shù)g(x)=2x3-3x2+$\frac{3}{2}$,則g($\frac{1}{100}$)+g($\frac{2}{100}$)+…+g($\frac{99}{100}$)=(  )
A.100B.99C.50D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知三棱柱ABC-A1B1C1的側(cè)棱垂直于底面,各頂點(diǎn)都在同一球面上,若該棱柱的體積為$2\sqrt{3}$,AB=2,AC=1,∠BAC=60°,則此球的表面積等于(  )
A.B.20πC.D.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)函數(shù)$f(x)=\frac{1}{2}{x^2}-(a+1)x+alnx,a>0$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)討論函數(shù)f(x)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知直線2ax+by-2=0(a>0,b>0)過(guò)點(diǎn)(1,2),則$\frac{1}{a}+\frac{1}$的最小值是( 。
A.2B.3C.4D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如圖是一個(gè)幾何體的三視圖,則該幾何體的體積為( 。
A.B.18πC.27πD.54π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在空間直角坐標(biāo)系中,點(diǎn)(-2,1,5)關(guān)于x軸的對(duì)稱點(diǎn)的坐標(biāo)為( 。
A.(-2,1,-5)B.(-2,-1,-5)C.(2,-1,5)D.(2,1,-5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知集合A={x|(x-1)(x-3)<0},B={x|2<x<4},則A∩B=(  )
A.{x|1<x<3}B.{x|1<x<4}C.{x|2<x<3}D.{x|2<x<4}

查看答案和解析>>

同步練習(xí)冊(cè)答案