當m∈[-2,-1]時,二次曲線
x2
4
+
y2
m
=1
的離心率e的取值范圍是( 。
A.[
2
2
,
3
2
]
B.[
3
2
,
5
2
]
C.[
5
2
,
6
2
]
D.[
3
2
,
6
2
]
二次曲線為雙曲線,則a2=4,b2=-m,c2=4-m,e2=1-
m
4
∈[
5
4
,
6
4
]
,∴e∈[
5
2
6
2
]
,故選C.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的右焦點為F,過F且斜率為
3
的直線交C于A、B兩點,若
AF
=4
FB
,則雙曲線C的離心率為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

曲線
x2
25
-
y2
9
=1
與曲線
x2
25-k
-
y2
9+k
=1(-9<k<25)
的(  )
A.實軸長相等B.虛軸長相等C.離心率相等D.焦距相等

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線
y2
4
-x2
=1,則它的漸近線方程為( 。
A.y=±2xB.y=±
1
2
x
C.y=±4xD.y=±
1
4
x

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在雙曲線x2-y2=8的右支上過右焦點F2的一條弦PQ,|PQ|=7,F(xiàn)1是左焦點,那么△F1PQ的周長為(  )
A.28B.8
2
C.14-8
2
D.14+8
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

雙曲線
x2
9
-
y2
16
=1
的兩個焦點為F1,F(xiàn)2,點P在雙曲線上.若PF1⊥PF2,求點P到x軸的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的右焦點為F(c,0),方程ax2+bx-c=0的兩個實根分別為x1和x2,則點P(x1,x2)與圓x2+y2=2的位置關系為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

下列命題正確的是______
①動點M至兩定點A、B的距離之比為常數(shù)λ(λ>0且λ≠1).則動點M的軌跡是圓.
②橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
2
2
,則b=c(c
為半焦距).
③雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的焦點到漸近線的距離為b.
④知拋物線y2=2px上兩點A(x1,y1),B(x2,y2)且OA⊥OB(O為原點),則y1y2=-p2
A.②③④B.①④C.①②③D.①③

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過雙曲線
x2
4
-
y2
3
=1
左焦點F1的直線交雙曲線的左支于M,N兩點,F(xiàn)2為其右焦點,則|MF2|+|NF2|-|MN|的值為( 。
A.0B.4C.8D.2

查看答案和解析>>

同步練習冊答案